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Preface

It is our pleasure to welcome you to the fourth edition of the International
Symposium on Engineering Secure Software and Systems.

This unique event aims at bringing together researchers from software engi-
neering and security engineering, which might help to unite and further develop
the two communities in this and future editions. The parallel technical sponsor-
ship from the ACM SIGSAC (the ACM interest group in security) and ACM
SIGSOFT (the ACM interest group in software engineering) is a clear sign of
the importance of this interdisciplinary research area and its potential.

The difficulty of building secure software systems is no longer focused on mas-
tering security technology such as cryptography or access control models. Other
important factors include the complexity of modern networked software systems,
the unpredictability of practical development life cycles, the intertwining of and
trade-off between functionality, security and other qualities, the difficulty of deal-
ing with human factors, and so forth. Over the last few years, an entire research
domain has been building up around these problems.

The conference program include two major keynotes from Cristian Cadar
(Imperial College London) on improving software reliability and security via
symbolic execution and Thorsten Holz (Ruhr University Bochum) on an overview
of modern security threats, and an interesting blend of research and idea papers.

In response to the call for papers, 53 papers were submitted. The Program
Committee selected seven contributions as research papers (13%), presenting
new research results in the realm of engineering secure software and systems. It
further selected seven idea papers, which gave crisp expositions of interesting,
novel ideas in the early stages of development.

Many individuals and organizations contributed to the success of this event.
First of all, we would like to express our appreciation to the authors of the
submitted papers and to the Program Committee members and external refer-
ees, who provided timely and relevant reviews. Many thanks go to the Steering
Committee for supporting this and future editions of the symposium, and to all
the members of the Organizing Committee for their tremendous work and for
excelling in their respective tasks. The DistriNet research group of the K.U. Leu-
ven did an excellent job with the website and the advertising for the conference.
Finally, we are also grateful to Andrei Voronkov for his EasyChair system.

We owe gratitude to ACM SIGSAC/SIGSOFT, IEEE TCSP and LNCS for
supporting us in this new scientific endeavor.

December 2011 Gilles Barthe
Benjamin Livshits

Riccardo Scandariato
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Application-Replay Attack on Java Cards:
When the Garbage Collector Gets Confused

Guillaume Barbu1,2, Philippe Hoogvorst1, and Guillaume Duc1

1 Institut Télécom / Télécom ParisTech, CNRS LTCI,
Département COMELEC,

46 rue Barrault, 75634 Paris Cedex 13, France
2 Oberthur Technologies, Innovation Group,

Parc Scientifique Unitec 1 - Porte 2,
4 allée du Doyen George Brus, 33600 Pessac, France

Abstract. Java Card 3.0 specifications have brought many new features
in the Java Card world, amongst which a true garbage collection mech-
anism. In this paper, we show how one could use this specific feature
to predict the references that will be assigned to object instances to be
created. We also exploit this reference prediction process in a combined
attack. This attack stands as a kind of ”application replay”attack, taking
advantage of an unspecified behavior of the Java Card Runtime Environ-
ment (JCRE) on application instance deletion. It reveals quite powerful,
since it potentially permits the attacker to circumvent the application
firewall: a fundamental and historical Java Card security mechanism.
Finally, we point out that this breach comes from the latest specifica-
tion update and more precisely from the introduction of the automatic
garbage collection mechanism, which leads to a straightforward counter-
measure to the exposed attack.

Keywords: Java Card, Combined Attack, Garbage Collection, Appli-
cation Firewall.

1 Introduction

To follow the emergence of new communication technologies, new Java Card
specifications have recently been released: Java Card 3.0. This new standard
comes in two editions: Classic and Connected. The Classic edition stands as
an evolution of previous versions of Java Card. The Connected edition repre-
sents the real novelty of this version, adding numerous features in the Java Card
world such as an embedded web server, the multithreading support, enhanced
security policy facilities, an extended API (Application Programming Interface).
All along this paper, we will focus on one of the new features introduced by the
Java Card 3.0 specifications: a true automatic garbage collection mechanism.
This particular feature is one of the rare novelty to be present in both editions
of the specifications.

G. Barthe, B. Livshits, and R. Scandariato (Eds.): ESSoS 2012, LNCS 7159, pp. 1–13, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 G. Barbu, P. Hoogvorst, and G. Duc

The contribution of this paper is twofold. First, we introduce the concept of
reference prediction, taking advantage of the garbage collection. In addition, we
show how an attacker with fault injection capacity could, under certain assump-
tions, use this concept to circumvent the application firewall through a so-called
replay attack.

The remainder of this paper is organized as follows: In Section 2, we introduce
the principle of reference prediction on Java Card platforms. In Section 3, we
describe the application firewall mechanism and expose the application-replay
attack under a given implementation assumption. Finally, we discuss the issues
raised by the predictability of object references and the different countermeasures
that could be implemented in Section 4.

2 Java Card Reference Prediction

This section introduce the notions of Java reference and garbage collection and
state the assumptions under which this work is based. Finally, we describe the
process we put into practice to achieve this prediction on the tested platforms.

2.1 Reference Assignment

The Java Card Virtual Machine (JCVM) aims at providing an abstraction layer
between the hardware device and Java Card applications. This abstraction is the
basement of the write once - run everywhere philosophy of the Java language. On
object instantiation, the JCVM is then responsible for allocating the memory to
store this object and assigning it a Java reference, possibly the allocated memory
address or a value abstracting this address. Regardless of its exact implemen-
tation, we assume in the remainder of this article that these Java references
are assigned following a straightforward linear process. That is to say, the next
reference to be assigned is the smallest reference that is not already assigned.

Formally, with (ri)1≤i≤n the previously allocated references, a new reference
rn+1 is allocated such that:

rn+1 = min{ri s.t. ∀ rj < ri, rj is used} (1)

We believe this assumption is not very restrictive since we have successfully
tested it on different cards from different manufacturers and different versions
of Java Card with the method given in Section 2.3.

For the sake of simplicity we will consider in the remainder of this article that
a reference is a value abstracting the physical address of an object. Otherwise,
the method would need to be adapted, taking into account the size of each object
instance.
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2.2 Garbage Collection

The principle of garbage collection is not a novelty, even in the Java Card con-
text. Indeed, Java Card 2.2 proposes (optionally) a memory reclaiming process
through the method JCSystem.requestObjectDeletion() [1]. However, this
method only schedules the object deletion service prior to the next invocation
of the Applet.process() method. That is to say, unreferenced objects are not
actually deleted on the method’s call.

The real novelty in the latest version of the Java Card standard is that
garbage collection is automatically triggered when memory space becomes in-
sufficient, or on specific event such as card reset for instance. Furthermore, the
System.gc() [2] method can be called at any time within an application and runs
the garbage collector. Unlike the JCSystem.requestObjectDeletion()method,
when control returns from the System.gc()method, the garbage collector should
have actually been executed and reclaimed unused memory.

We will not go into further details in the garbage collection mechanism and
will only consider that the garbage collector implementation ensures that it will
reclaim the memory used by objects that are not accessible anymore (unrefer-
enced). The important point to bare in mind is rather the evolution of the Java
Card specifications regarding this functionality.

2.3 Reference Prediction

We can now introduce one of the contribution of our work, the reference pre-
diction process. As this process relies on a particular type confusion, we recall
the previous works achieved on this particular topic before giving a complete
description of the process.

Previous Works on Type Confusion. Type safety is one of the cornerstone
of the Java language security. Most of the literature presenting potential attacks
on Java Card (or even on Java SE [3]) use type confusion at some point in the
attack path.

Until 2009, attackers have to count on bugs on specific mechanisms or to
load an ill-formed application thanks to .CAP file manipulation to provoke a
type confusion [4, 5, 6]. The release of the Java Card 3.0 Connected Edition has
rendered this path theoretically impracticable making the On-Card Bytecode
Verification (OCBV) of application mandatory. The use of fault attacks has
then emerged as a quite efficient technique to reach this point, as exposed in a
couple of recent publications [7, 8, 9, 10, 11, 12].

In [7], Barbu et al. describe a way to forge object’s reference thanks to a
type confusion (e.g. Object o = 0x12345678;). For that matter, they achieve a
physical fault injection during a checkcast execution in order to render it suc-
cessful and provoke a type confusion between two instances of different classes.
The first class holding an Object class field, and the other an integral class
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field (short or int depending on the size of an object’s reference). Getting the
reference of an object is then as easy as reading an integral field. Similarly,
forging the reference of the Object field is then as easy as assigning a value to
the integral field.

In the remainder of this paper we will consider that an adversary has the
ability to read and forge references.

How to Get the Reference of an Object ?. The aim of this section is to
expose a process to predict the values by which object instances to be created
will be referred to. As the previous section lets guess, this process involves the
memory allocation and reclaiming mechanisms. But the first requirement for this
process is to be able to learn the value of an object’s reference.

In the context of Java Card 3.0, this question is answered within the API
specification [2] (at least, one answer is suggested).

Quote 1. ”As much as is reasonably practical, the hashCode method defined by
class Object does return distinct integers for distinct objects. (This is typically
implemented by converting the internal address of the object into an integer,
but this implementation technique is not required by the JavaTMprogramming
language.)”

This suggestion can be argued by the fact that two instances of the Object

class will only differ by their internal addresses (or Java references if these two
concepts are not merged within the considered platform). It is then consistent
to use it to distinguish such objects.

On Java Card 2.x.y platforms (as well as on Java Card 3.0 platforms that
do not implement the hashCode method as suggested) the following approach
including type confusion has to be considered as described in Listing 1.1.

Assuming that it is possible to learn the reference of an object instance appears
then reasonable.

How to Predict the Reference of an Object ?. Under the linear reference
assignment assumption, the prediction process is described by Algorithm 1.

With regards to (1), on step 1 the allocated reference rk is s.t.

rk = min{ri s.t. ∀ rj < ri, rj is used} (2)

After, step 2 and 3, we know that rk is not used anymore.
The following allocated reference rl will be s.t.

rl = min{ri s.t. ∀ rj < ri, rj is used} (3)

Consequently, putting (2) and (3) together, we have,

rl = rk (4)

The successive object instantiation and deletion allow us to discover the next
available reference, since it is the one that has just been released. Actually,
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Listing 1.1. Getting the reference of an object

/∗∗
∗ Class A ho l ds an Object f i e l d : o
∗ Class B ho l ds an i n t e g r a l f i e l d : r e f
∗ A a and B b are pu b l i c f i e l d s o f the c l a s s .
∗/

public void i n i tCon fu s i on ( ) {
A a = new A( ) ;
// Need a f a u l t i n j e c t i o n at runtime to avoid
// a ClassCastExcept ion throwing .
B b = (B) ( Object ) a ;

}
public short getRe f e r ence ( Object o ) {

// Type con fus i on has ”merged ” a . o and b . r e f
a . o = o ;
return b . r e f ;

}

Algorithm 1: ReferencePrediction()

Delete current unreachable object instances: System.gc();0

Create a new object instance: Object o = new Object();1

Get the reference of this instance: ref = getReference(o);2

Make this object unreachable: o = null;3

Delete this unreferenced object: System.gc();4

The next assigned reference will be ref5

this behavior has been previously observed by Hogenboom et al. [13] in the
context of another mechanism leading to memory reclaiming on a Java Card
2.1.1: transaction aborting.

This can be easily tested on any platform supporting the Java Card 3 speci-
fications by running the code in Listing 1.2.

Under the assumptions previously stated, we can now consider that we are
able of reading/writing the reference of an object, but also that we can predict
the reference of future object instances.
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Listing 1.2. Testing the prediction process

System . gc ( ) ; // F i r s t c a l l to the garbage c o l l e c t o r to
// d e l e t e curren t unreachab le r e f e r ence s .

o1 = new Object ( ) ; // Assign a new re f e r ence to o1 and s t o r e
h1 = o1 . hashCode ( ) ; // the va lue o f t h i s r e f e r ence in h1 .

o1 = null ; // Set o1 to nu l l and c a l l the garbage
System . gc ( ) ; // c o l l e c t o r to a c t u a l l y d e l e t e i t .

o2 = new Object ( ) ; // Assign a new re f e r ence to o2 and s t o r e
h2 = o2 . hashCode ( ) ; // the va lue o f t h i s r e f e r ence in h2 .

i f ( h1 == h2) // Compare s t o r ed r e f e r ence s . . .
// The assumption i s v e r i f i e d .

else
// The assumption i s not v e r i f i e d .

3 Application Replay to Circumvent the Application
Firewall

This section exposes how the ability of predicting and forging references can be
used to circumvent the application context isolation through a so-called replay
attack.

3.1 Java Card Context Isolation : The Application Firewall

Java platforms (Java Standard Edition and Java Micro Edition for instance) usu-
ally execute one application per virtual machine instance. One difference of the
Java Card platform is that it executes a single instance of the virtual machine.
Therefore, it must ensure each hosted application that other applications will
not access its own data or code within this single virtual machine instance. For
that purpose, the specifications mandate the implementation of an application
firewall, isolating each application as well as the Java Card Runtime Environ-
ment. Figure 1 depicts the context isolation mechanism and the firewall crossing
permission in the platform.

Application Firewall Implementation. A possible implementation of the
context isolation would be to assign each application group a context identifier.
When an application creates an object, this object would then inherit the con-
text identifier of its ”maker”. Then access across context can be easily checked
by comparing the accessing context identifier and the accessed context identifier.
If the context identifiers are matching, access is granted, else the firewall deny
the access and a SecurityEcxeption is thrown.
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Fig. 1. Contexts within the Java Card platform’s object system (as per [14])

Such an implementation appears quite suitable in a constrained system. It
does not consume too much memory (one 8/16/32-bit word per object to protect
it), the access decision is simple (a word comparison) and it does not constrain
the number of objects an application can hold. Actually, some experiments based
on ill-formed applet loading on Java Cards 2.X.Y from different card manufac-
turers and on the C reference implementation provided within the Java Card
2.2.2 Development Kit1 has proven this implementation is (at least has been)
used. We will consider such an implementation in the remainder of this article.

This implementation choice leads to a first question:

Question 1. Where does the context identifier comes from ?

Many answers could be given to that question (a random value, an internal
counter, the hash of that application’s name, ...). However, the important thing
is to ensure that two application instances living at the same time in the card
does not have the same context identifier. Hence the answer to this question has
only a limited interest from an attacker’s point of view. We will come back to
that point in Section 3.3.

3.2 Application Instance Deletion

Java Card platforms allow the post-issuance loading of application. With this
capacity comes also that of unloading application. To sum up, an application
will then go through the following cycle during its life:

1 JCDK available at http://download.oracle.com/otn-pub/java/java_card_kit/2.
2.2/java_card_kit-2_2_2-linux.zip

http://download.oracle.com/otn-pub/java/java_card_kit/2.2.2/java_card_kit-2_2_2-linux.zip
http://download.oracle.com/otn-pub/java/java_card_kit/2.2.2/java_card_kit-2_2_2-linux.zip
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1. Application module loading.
2. Application instance creation.
3. Application execution.
4. Application instance deletion.
5. Application module unloading.

The step we are particularly interested in is the application instance deletion.
In order not to depend on any implementation specific mechanism, we will only
consider this process according to the specifications.

Java Card 2.2.2. On Java Card 2.2.2, applet instance deletion is processed by
an entity referred to as the Applet Deletion Manager (ADM). The behavior of
the ADM is specified in the JCRE specification. In particular, it is stated that:

Quote 2. “Applet instance deletion involves the removal of the applet object
instance and the objects owned by the applet instance and associated Java Card
RE structures.”

Consequently, all objects owned by the applet instance should be actually deleted
within the deletion process.

Java Card 3.0. On Java Card 3.0, applet instance deletion is processed by the
Card Management Facility (CMF). The behavior of the CMF is specified in the
JCRE specification. In particular, it is stated that:

Quote 3. ”An application instance is successfully deleted when all objects owned
by the application instance are inaccessible on the card.”

Quote 4. ”Upon successful deletion, [the card management facility] fires an ap-
plication instance deletion event - event:///standard/app/deleted - with the
application instance URI as the event source to all registered listeners.”

The important point to notice here is that what happens between the application
instance deletion, the event firing and the actual notification of potential event
listeners is not addressed in the specifications. This is indeed the starting point
of the attack described in the following section.

3.3 ”Application-Replay” Attack on a Java Card 3.0

The previous section has highlighted a difference between the application in-
stance deletion processes on Java Card 2.2.2 and 3.0. Indeed the later does not
mandate that object instances belonging to an application instance are deleted
together with the application instance. This lead us to think that the manda-
tory deletion of objects on Java Card 2.2.X has not been thought as a security
mechanism, but rather as a functional one. Actually, since the garbage collec-
tion is not mandatory on Java Card 2.2.X platforms, one has to explicitly delete
objects that are not used anymore. Else they will still be consuming memory for
the whole card lifetime. This explains the disappearing of this statement in the
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Java Card 3.0 specifications since the garbage collector ensures that those ob-
jects will be deleted eventually. The application-replay attack detailed hereafter
is then limited to Java Card 3.0 platforms.

The remainder of this section describe a possible attack scenario divided into
two steps:

– First, the attacker needs to prevent the deletion of the targeted application’s
objects;

– Then, the attacker must find a way to access these objects despite the ap-
plication firewall.

Illegal Memory Consumption. The aim of this first step of the attack is,
for the adversary’s application, to gain references to objects belonging to the
targeted application, even though this application gets deleted.

Let us first put together the different pieces of information gleaned so far.
We know from Quote 3 that the CMF should consider an application instance
deletion successful when all objects it owned are inaccessible. This means these
objects are garbage-collectable, but not necessarily that they have been garbage-
collected. In addition, we know from Quote 4 that the CMF will fire an event on
successful deletion. Finally, we know how to predict and forge object references
from Section 2.

Bounding Object Instances Owned by Another Application Instance. Consider
now two applications called Forgery and Target, respectively the adversary’s
and the targeted application. We assume that Forgery is loaded and instanti-
ated. That is to say, its binary representation is on-card and it has been initial-
ized. On the other hand, we assume that that Target is only loaded. That is
to say its binary representation is on-card but it has not been initialized. Fur-
thermore, we let Forgery register an event listener to be notified of application
instance deletions (say on the URI event:///standard/app/deleted/*).

The Forgery application instance can then guess the starting and ending
bounds of the Target application instance to be, following these steps:

1. Call the garbage collector.
2. Predict the next reference (let us call it start).
3. Let Target be instantiated.
4. Instantiate an object to get the ”current” reference and deduce the last ref-

erence instantiated by Target (let us call it end).

The Forgery application then knows that the references of Target’s objects are
s.t. ∀ri ∈ Target, start ≤ ri ≤ end.

Preventing the Deletion of Objects on Application Instance Deletion. The attacker
can then request the Targetapplication instance deletion.During the deletionpro-
cess, the cardmanagement facility will ensure that all objects belonging to this ap-
plication instance are not referenced anymore. We emphasize the fact that these
objects are not necessarily deleted as long as the garbage collector is not executed.
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On notification of the application instance successful deletion, the Forgery

application can then forge object’s references in an array of end− start objects
to values between start and end − 1. This is achieved through a type confu-
sion similar to that exposed in Listing 1.1, considering the confused object is
an instance field2. By doing so, the attacker prevents these objects from being
actually garbage collected, so-to-speak consuming their references.

At this point, the attacker’s application instance hold references to objects
that do not belong to it. Trying to access these objects in that application would
then irremediably lead to a SecurityException throwing. The following section
adapts the principle of the replay attack to overcome this.

Application Firewall Circumvention. The adversary’s application holds ref-
erences belonging to a deleted application instance. The only way to access these
references would then be to collaborate with a new application instance imper-
sonating the deleted one.

It becomes obvious now that the answer to Question 1 would then only be
useful to help answering the real critical question:

Question 2. Can a new application instance be given the same context identifier
as a former (deleted) application instance ?

If we cannot give an accurate answer to Question 1 without knowing the exact
implementation of the platform, this last question could be answered by exper-
imentation. Given that no Java Card 3.0 platforms have been publicly released
so far we have not been able to test this particular behavior on various Java
Card 3.0 platforms. Nevertheless, we have run our experimentation on differ-
ent cards implementing different versions of the Java Card 2 specifications with
mostly positive results. Let us assume now that the answer to the last question
was ”Yes”.

The attacker would then only have to instantiate a new application, ”send”
the forged objects from Forgery to that new application and try to access them.
This operation can be repeated until no SecurityException is thrown, which
means that the new application has been assigned the same context identifier
as the original Target application instance. That is to say, the new application
impersonates the previous Target’s application instance.

The last difficulty resides in the ”sending” of the forged objects from Forgery

to the new application, since Forgery is not authorized to use these objects
by the application firewall. This is why we considered in 3.3 an array of forged
objects (the array itself is then still legally usable by Forgery). A mere library
permits then to store this array from Forgery and access its content from the
new application without having to pass through the application firewall.

Eventually, the new application instance has then full access to the objects
created by the Target’s application instance. The application firewall has been
circumvented.

2 Consequently a single fault injection is necessary for all reference forgeries.
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So far, this article has proven the possibility to circumvent the Java Card ap-
plication firewall, under certain assumptions. Nevertheless, the following section
shows that this attack can be thwarted with an adequate implementation.

4 Analysis and Countermeasures

The attack describe in the previous section relies on two key elements:

– a “lazy” application instance deletion process.
– the attacker’s ability to provoke a type flaw and to forge an object’s reference.

Object Deletion. This basement of our attack lies in Quote 3, i.e. the card
manager only ensures that objects owned by the application instance to be
deleted are not accessible anymore. In a way, the specifications encourage im-
plementors to give in to the temptation to rely on automatic garbage collection
for the effective deletion of these objects.

Thus, it is assumed that the garbage collection will be executed later and that
it will delete all inaccessible objects. But between the successful deletion event
is fired and the next garbage collection is requested, many things can happen,
as exposed within the previous section.
It appears then necessary that the application instance deletion process ensures
not only that the objects previously owned by the application to be deleted are
inaccessible but also that they are actually deleted when the application instance
is deleted. This is indeed what prevents the attack from succeeding on Java Card
2.X platforms, although it seems to us that this has not been specified to enforce
security.

This possible breach may be easily taken care of within the implementation
of the CMF. Nevertheless, JC3 platforms intending to be considered as secure
systems, we go as far as to recommend that mandatory deletion of objects be-
longing to a deleted application instance should be added in the next update of
the Java Card 3.0 specifications.

Ensuring Type Safety. Yet, the type confusion is the technical root of our
attack. Without the type confusion, we would have not been able to recover the
undeleted objects. Actually, even on platforms supporting OCBV, such a type
flaw can be caused by various fault injections. Barbu et al. take advantages of a
faulty checkast execution, while Vetillard et al. manages to turn an instruction
into a nop, thus making an instruction from a parameter and provoking an early
method return. At CARDIS’11, Barbu et al. presented another way to provoke
a type confusion through a faulty operand stack as well as a countermeasure to
ensure the operand stack integrity. However this does not prevent the success of
the previously cited attacks. Furthermore, other paths to type confusion might
be discovered.

The study of the different ways to provoke a type confusion through physical
perturbations, as well as the design of countermeasures ensuring type safety in
the presence of faults is an ongoing work.



12 G. Barbu, P. Hoogvorst, and G. Duc

5 Conclusion

In this paper, we have introduced the principle of reference prediction on Java
Card platforms and exposed an attack based on the Java Card 3.0 specifications
leading to the circumvention of the application firewall.

This work has been based on several assumptions concerning the implementa-
tion of the attacked platform which implicitly sketches possible countermeasures
(type safety enforcement, actual deletion of objects, unpredictable reference as-
signment, uniqueness of firewall identifiers). Although we did not put into prac-
tice the complete attack path on a Java Card 3.0 platform, we have been able to
test successfully the different assumptions required to achieved it on Java Card
2.X platforms from different origins.

Finally, this work outlines a possible weakness in the Java Card 3.0 spec-
ifications. Although the exposed attack scenario may appear unlikely on the
field, we believe it should be taken into consideration in a future update of the
specifications.
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1 Introduction

Aligning organizations to meet security demands is a challenging task. Security
standards, e.g. the ISO 27000 series of standards, offer a way to attain this goal.
The normative standard of the aforementioned series, the ISO 27001, contains
the requirements for an Information Security Management System (ISMS) [1].
The standard prescribes a process, which tailors security to the needs of any kind
of organization. The remaining standards of the ISO 27000 series describe parts,
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or usage scenarios, of the ISMS in detail [1]. For example, the ISO 27005 [2]
describes information security risk management. The ISO 27005 has a certain
significance as the ISO 27001 is risk-centered in many sections, and the ISO
27005 describes the risk assessment process and the risk documentation and
management in detail. However, the ISO 27005 is not normative.

The ISMS consists of processes, procedures, and resources that can be soft-
ware. Sparse descriptions in the standard are a problem during the establish-
ment of an ISMS. For example, the required input for the scope and boundaries
description is to consider “characteristics of the business, the organization, its
location, assets and technology”[3, p. 4].

Moreover, the standard does not provide a method for assembling the neces-
sary information or a pattern on how to structure that information.

Security requirements engineering (SRE) methods, on the other hand, provide
structured elicitation and analysis of security requirements. SRE methods can
be part of the early phases of a given software development process. However,
we propose not to limit SRE methods to software development. The structured
elicitation and analysis of security requirements of SRE methods is also useful
for different security engineering contexts. Therefore, we propose to use SRE
methods to support security engineers in the development and documentation
of an ISMS, compliant to ISO 27001. In addition, the ISMS is a process for
security that may also rely on secure software. Thus, SRE methods can also
support software engineers in building secure software for an ISMS.

Our work addresses the research question, if and to what extent SRE ap-
proaches can support the development of an ISO 27001 compliant ISMS. More-
over, it addresses the question in what way SRE methods provide the required
documentation for an ISMS and how existing SRE documentation can be re-used
for an ISMS.

The rest of the paper is organized as follows. Section 2 presents background
on the ISO 27001 standard, and Sect. 3 presents the CF of Fabian et al. [4]. We
set up a relation between the ISO 27001 standard and the conceptual framework
(CF) in Sect. 4. In addition, we obtain a relation of security requirements meth-
ods to the ISO 27001. Section 5 provides insights into the results of the relations
and Sect. 6 presents related work. Section 7 concludes and gives directions for
future research.

2 The ISO 27001 Standard

The ISO 27001 standard is structured according to the “Plan-Do-Check-Act”
(PDCA) model, the so-called ISO 27001 process [3]. In the Plan phase an ISMS
is established, in the Do phase the ISMS is implemented and operated, in the
Check phase the ISMS is monitored and reviewed, and in the Act phase the ISMS
is maintained and improved. In the Plan phase, the scope and boundaries of the
ISMS, its interested parties, environment, assets, and all the technology involved
are defined. In this phase, also the ISMS policies, risk assessments, evaluations,
and controls are defined. Controls in the ISO 27001 are measures to modify risk.
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The ISO 27005 [2] refines this process for risk management and extends it with
a pre-phase for information gathering.

3 A Conceptual Framework for Security Requirements
Engineering

Notions and terminology differ in different SRE methods In order to be able to
compare different SRE methods, Fabian et al. [4] developed a CF that explains
and categorizes building blocks of SRE methods. In their survey the authors
also use the CF to compare different SRE methods. Karpati et al. [5, p. 714]
conclude in their survey that the only existing “uniform conceptual framework
for translations”of security terms and notions for SRE methods is the work of
Fabian et al. [4]. Therefore, we use this CF and base our relations between
the ISO 27001 and SRE methods on it. For simplicity’s sake, we work on a
subset of the CF. The CF considers security as a system property using the
terminology of Michael Jackson [6], which defines that a system consists of a
machine and its environment. The machine is the thing to be built, e.g., software.
The part of the real world into which the machine will be integrated is the
environment. The description of the desired behavior of the environment after
the machine’s integration is the so-called requirement. The CF considers four
main building blocks of SRE methods: Stakeholder Views, System Requirements,
Specification and Domain Knowledge, and Threat Analysis. Stakeholder Views
identify and describe the stakeholders and their functional and non-functional
goals and resulting functional and non-functional requirements. Stakeholders
express security concerns via security goals. These goals are described towards
an asset of the stakeholder, and they are refined into security requirements.

System Requirements result from a reconciliation of all functional, security
and other non-funtional requirements, while the stakeholder view perspective
focuses on the requirements of one stakeholder in isolation. Hence, the system
requirements analysis includes the elimination of conflicts between requirements
and their prioritization. The result is a coherent set of system requirements. Re-
quirements are properties the system has after the machine is built. The Spec-
ification and Domain Knowledge building block consists of specifications,
assumptions and facts. The specification is the description of the interaction
behavior of the machine with its environment. It is the basis for the construc-
tion of the machine. Assumptions and facts make up the domain knowledge.
The domain knowledge describes the environment in which the machine will be
integrated. In practical terms this means the security requirements have to be
reviewed in context of the environment. The Threat Analysis focuses on secu-
rity properties required by stakeholders. A violation of a security property is a
potential loss for a stakeholder. This loss constitutes a risk for the stakeholder,
which is reduced by countermeasures. A vulnerability may lead to a violation
of a security property, and it is mitigated by a countermeasure. Attacks actu-
ally exploit vulnerabilities, while threats only potentially exploit vulnerabilities.
Attacks realize threats.
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Fig. 1. Relating security requirements engineering methods with the ISO 27001

4 Relating the ISO 27001 Standard and Security
Requirements Engineering Methods

Our work starts with a top-down approach. We systematically analyze the ISO
27001 standard in order to determine where and how SRE methods can support
the development and documentation of an ISMS according to ISO 27001. We
depict the analysis in Fig. 1. First, we create a relation between the ISO 27001
standard and the CF of Fabian et al. [4]. Second, we use the relation of termi-
nologies and notions from the CF to numerous SRE methods already provided
by Fabian et al. Third, combining the relations of steps 1 and 2 we can relate
the ISO 27001 with different SRE methods.

The second part of our work is a bottom-up approach. We support re-using
documents created by an SRE method, so-called SRE documents (step 4). We
can re-use the relation between the used SRE method and the CF to figure out
what ISO 27001 section the SRE documents support. If this relation does not
yet exist, we have to create it (step 5). It is sufficient to create a relation between
the CF and the SRE method, because of the existing relation between the CF
and ISO 27001. Thus, transitive relations from the ISO 27001 to existing SRE
documents are possible (step 6).

Note that the ISO 27001 sparsely describes the structure and content of an
ISO 27001 compliant documentation. Thus, a relation between a specific artifact
generated by a SRE method and a certain part of the documentation required
by the ISO 27001 cannot firmly be established. It is up to the auditors to decide
if an artifact fully fulfills an ISO 27001 documentation need.

Table 1 relates relevant terms for security from the CF by Fabian et al. [4] to
the ISO 27001 standard. The matching benefits from the fact that both docu-
ments rely on ISO 13335 [7] definitions for several terms.

ISO 27001 Section 4 describes the ISMS. Hence, we focus on this section in
particular. Table 2 lists relations between subsections of ISO 27001 Section 4 and
the CF’s building blocks. We present all subsections of ISO 27001 Section 4.2,
because these describe the establishment of the ISMS. In addition, we show risk
management as a separate column, even though it is part of the CF’s building
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Table 1. Correspondence between ISO 27001 terms and terms of the CF [4]

CF Fabian et al. ISO 27001

System The organisation is the “scope”of the standard [3, p. 1].

Machine The Information Security Management System (ISMS) is
the machine to be built [3, p. v].

Environment The scope and boundaries of the “organization”[3, p. 4,
Sec 4.2.1 a] relevant for the ISMS.

Security Goal The standard uses security objectives [3, p. 4, Sec 4.2.1 b]
instead of security goals.

Security Requirement Security requirement is also used in ISO 27001 as a descrip-
tion of the “organization”after the “ISMS”is introduced [3,
p. v,vi].

Specification The ISMS’s policy, controls, processes and procedures [3,
p. vi] are the specification of the machine.

Stakeholder The Interested Parties [3, p. vi] have security “expecta-
tions”that are input for the ISMS implementation as well
as “security requirements”.

Domain Knowledge The characteristics of the business, the organization, its
location, assets and technology [3, p. 4].

Availability The definition in ISO/IEC 13335 [7] is also used [3, p. 2].

Confidentiality The definition in ISO/IEC 13335 [7] is also used [3, p. 2].

Integrity The definition in ISO/IEC 13335 [7] is also used [3, p. 2].

Asset The definition in ISO/IEC 13335 [7] is also used [3, p. 2].

Threat The definitions match. Threats are defined towards assets
and threats exploit vulnerabilities [3, p. 4].

Vulnerability The definitions match [3, p. 4].

Risk The CF defines risk as “the potential loss of a
stakeholder”[4, p. 13], while in ISO 27001 risk is not de-
fined explicitly. However, the risk identification evolves
around identifying asset, threat, vulnerability and the im-
pact a loss of availability, confidentiality and availability
has on an asset [3, p. 4]. Hence, we can conclude that the
meaning is similar.

block threat analysis. The reason is that some subsections of ISO 27001 Section 4
and SRE methods specifically focus on risk management. Moreover, the impor-
tance of risk in the ISO 27000 series of standards resulted in the standard ISO
27005 for information security risk management that specifies the risk manage-
ment of the ISO 27001 [2]. A “+”in Tab. 2 marks a part of the section that can
be supported by a building block of the CF. However, the free cells of the table
do not imply that a method could not support that section of the ISO 27001.
A grey row indicates that there are no explicit matches between the ISO 27001
section and the CF.
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5 Insights

We presented a relation between SRE methods and the ISO 27001 standard.
The relations were obtained via the CF of Fabian et al. [4]. This CF presents
four distinct building blocks of SRE methods. Table 2 relates the ISO 27001
standard to these building blocks. The Stakeholder Views building block has
multiple relations to ISO 27001 sections. The reason is that the counterparts in
the standard focus on the view of the organization including its stakeholders. The
Stakeholder Views are part of numerous goal-oriented approaches, e.g., Secure
Tropos [8] and KAOS [9]. This is no surprise, because these methods often derive
their goals from the views of stakeholders.

Also the Threat Analysis building block has multiple counterparts in the ISO
27001. The reason for these is the strong emphasis of the standard on risk, which
is part of that building block. Thus, risk management-oriented approaches, such
as CORAS [10], play a crucial role in an ISO 27001 assembly. The problem-
oriented approaches, e.g. SEPP [11], are useful for the structured collection of
knowledge about the environment that must be considered.

Table 3 presents the mandatory documents for an ISO 27001 documentation
according to [3, p.13]. In addition, Tab. 3 shows the kinds of SRE methods that
support the assembly of these documents. The table is based upon our analysis
in Sect. 4.

Table 2. Relating ISO 27001 Section 4 to CF building block

Section Description SV SR SDK TA RM

Sect. 4.1 General requirements + + + + +

Sect. 4.2 Establish and manage the ISMS + + + + +

Sect. 4.2.1 Establish the ISMS + + + + +

Sect. 4.2.1 a Define scope and boundaries + +

Sect. 4.2.1 b Define ISMS policy + + + +

Sect. 4.2.1 c Define risk assessment +

Sect. 4.2.1 d Identify the risk + + +

Sect. 4.2.1 e Analyse and evaluate risk + + +

Sect. 4.2.1 f Identify risk treatment + +

Sect. 4.2.1 g Select controls + +

Sect. 4.2.1 h,i Obtain management approval

Sect. 4.2.1 j Prepare a statement of applicability + +

Sect. 4.2.2 Implement and operate the ISMS + +

Sect. 4.2.3 Monitor and review the ISMS + + + + +

Sect. 4.2.4 Maintain and improve the ISMS

Sect. 4.3 Documentation requirements + + + + +

SV(Stakeholder Views),SR(System Requirements), SDK(Specification and Domain
Knowledge),TA(Threat Analysis), RM(Risk Management)
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Table 3. Support of SRE Methods for ISO 27001 documentation

Documentation Requirements ISO 27001 Support from SRE Methods

ISMS policies and objectives Goal-/Problem-/Risk-oriented methods
Scope and boundaries of the ISMS Goal-/Problem-/Risk-oriented methods
Procedures and controls Risk-oriented methods
The risk assessment methodology Risk-oriented methods
Risk assessment report Risk-oriented methods
Risk treatment plan Risk-oriented methods
Information security procedures Goal-/Problem-oriented methods
Control and protection of records No support from SRE methods
Statement of Applicability Goal-/Problem-/Risk-oriented methods

6 Related Work

Mondetino et al. investigate possible automation of controls that are listed in
the ISO 27001 and ISO 27002 [12]. Beckers et al. [13] propose a common pattern
for the cloud computing domain to support context establishment and asset
identification of the ISO 27000 series. Both works can complement our own.

7 Conclusion

We have established a relation between the ISO 27001 standard and SRE meth-
ods. Thereby we build on the CF of Fabian et al. [4], which already established
relations between the CF’s terms and notions of several SRE methods. We con-
tribute further relations from the ISO 27001 standard to the CF. The two sets
of relations can be combined to identify suitable SRE methods for establishing
an ISMS compliant with ISO 27001.

Our approach offers the following main benefits:

– Re-using SRE methods to support the development and documentation of
security standards (here: ISO 27001) compliant systems

– Systematic identification of relevant SRE methods for an ISO 27001 section
– Improving the outcome of ISO 27001 implementation by supporting estab-

lishment and documentation of an ISMS
– Re-using the structured techniques of SRE methods for analyzing and elici-

tating security requirements to support the refinement of sparsely described
sections of the ISO 27001 standard

In the future we will look into extensions of SRE methods in order to be able to
support the management and auditing demands of the ISO 27001 standard.
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Abstract. Our general purpose crypto-processor runs RISC machine code in
an encrypted environment, reading encrypted inputs and generating encrypted
outputs while maintaining data encrypted in memory. Its intended use is secure
remote processing. However, program addresses are processed unencrypted, re-
sulting in a mix of encrypted and unencrypted data in memory and registers at
any time. An aspect of compiling for it is typing the assembler code to make sure
that those instructions that expect encrypted data always get encrypted data at
execution time, and those that expect unencrypted data get unencrypted data. A
type inference system is specified here and transformed into an executable typing
algorithm, such that a type-checked asembler program is guaranteed type-safe.

1 Introduction

The term ‘crypto-processor’ has been used to label several hardware-based solutions
aimed at helping system security [2,5,7]. Our crypto-processor [1] is a general purpose
unit that performs computations on mixed unencrypted and encrypted data held at en-
crypted addresses in memory. Its instruction set is standard RISC [6] but interpreted on
encrypted data. In other words, when the processor computes 43+43=1234789 via an
‘addiu’ machine instruction, it may well be computing an encrypted version of 1+1=2
but the latter ‘translation’ should be unknown to all but the remote owner. The processor
characteristics are summarised in Box 1.

Box 1. A crypto-processor . . .

. . . for the purposes of this article is a RISC CPU that
manipulates mixed encrypted and unencrypted data in
general purpose registers and memory. It runs on:

– encrypted data values and addresses, giving en-
crypted results where appropriate;

– unencrypted program addresses; while

– data and function codes embedded in the machine
code are encrypted, register indices unencrypted.

The intention is to be able to hide
data and process from prying eyes in
a remote computing environment – a
cloud, for example. The hardware de-
sign is intended to make that feasible
and secure even in simulation. The
detail of the design is such that: (i)
arithmetic and logical machine code
instructions act on encrypted data and
encrypted data addresses and produce
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encrypted data; (ii) control instructions (branches, jumps, etc) act on unencrypted
program addresses; (iii) data embedded in machine code instructions and instruction
function codes are encrypted; (iv) data or data addresses in memory and registers are en-
crypted; (v) program addresses in memory and registers are unencrypted; (vi) memory
is divided into heap, which contains encrypted data, and stack, which contains mixed
encrypted and unencrypted data.

As a consequence of the program addresses remaining unencrypted, programs are
generally arranged in contiguous areas of memory. While that is certainly an advantage
for cacheing, there is a different physical reason behind it: the circuit that updates the
program counter is physically distinct from the circuitry that does the general arithmetic
in the CPU. There is also a cryptographic reason: since the usual change in the program
counter from cycle to cycle is a straightforward increment, plenty of information on the
encryption could be gathered were the program counter to be observed (nevertheless,
there is no fundamental design impediment to encrypting program addresses too).

That is a brief overview of how our crypto-processor works, but where is the neces-
sity for type-checking assembler code? The answer is that at least one standard RISC
machine instruction, the ‘jump register’ (jr) instruction, expects to read an unencrypted
program address value from a register. And it is not the only instruction to expect un-
encrypted data – or to generate it. Thus, at any given moment, memory and registers in
our crypto-processor contain a mix of encrypted and unencrypted data. That raises the
question of whether a program for the crypto-processor is properly type-safe:

Definition 1. A program is type-safe for a crypto-processor if those machine instruc-
tions in the program that work on encrypted data always get encrypted data on which
to work during execution of the program, while those instructions that work on unen-
crypted data always get unencrypted data on which they can work.

This paper sets out a type-checking algorithm for assembler programs written for the
crypto-processor, such that when a program type-checks, then it is type-safe.

The organisation of this paper is as follows: Section 2 introduces type-checking. Sec-
tion 3 details the RISC+CRYPT assembler language (in an unencrypted representation)
for our crypto-processor, and gives the inference rules of a type-system. Section 4 turns
the inference system into an algorithm which deduces types. Section 5 elaborates the
type-system (and associated type-checking algorithm) so that a RISC+CRYPT program
which type-checks successfully is guaranteed type-safe.

2 Type-Checking

Successfully type-checking a program guarantees that:

(a) the distribution of encrypted and unencrypted data in the registers at every pass
through the encrypted machine code always satisfies the same pattern at the same
point in the code;

(b) the distribution of encrypted and unencrypted data in the registers is compatible
with the instruction operating on them at every point.
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Box 2. A simple system of types . . .

. . . describes register contents each processor cycle:

c // encrypted data
u // unencrypted data
x // type variables match all data

The first claim says that the pat-
tern of encrypted and unencrypted
data in registers is stable as loops are
repeated, subroutines are called, etc.
The simple system of encrypted ‘c’
and unencrypted ‘u’ data types used
by the analysis is shown in Box 2.

For example, a pattern of types in
registers 0 to 31 before and after the move t2 t3 (i.e., ‘t2 ← t3’ for registers t2, t3)
instruction, is shown in Box 3. After the instruction, the type of the data in register t2
may be either encrypted or unencrypted, but it is constrained to be the same as the type
of the data in register t3. The type signature is expressed as follows:

move t2 t3 :: [t3 : x]→ [t2 : x, t3 : x]

Variable x matches any data type and every register not explicitly mentioned remains
unchanged in type. The notation will be used throughout this article.

Box 3. A register type pattern . . .

. . . around the move t2 t3 instruction (i.e., t2← t3):

reg. 0 1 2 3 . . . 10 11 . . .

before x0 c x2 u . . . c x11 . . .
after x0 c x2 u . . . x11 x11 . . .

Registers t2, t3 are registers 10, 11 respectively.

What of the second guarantee af-
forded by the typing algorithm? The
claim is that the before-after patterns
of register occupation around each in-
struction conform to the semantics
of the instruction. In the case of the
move t2 t3 instruction, that means
that whatever kind of data was in reg-
ister 11 (t3) at the beginning, is also the kind of data found in register 10 (t2) afterwards,
and nothing else has changed, just as in Box 3.

Box 4. The assembly language . . .

. . . for the crypto-processor includes ‘CRYPT’ pseudo-
instructions in addition to RISC assembler:

– pushn, popn – in-/decrease stack by n words;

– pushu r, pushc r – append to stack one new
word copied from plaintext/encrypted register r;

– popu r, popc r – displace last word of plain-
text/encrypted stack content to register r;

– putu r n, putc r n – copy plaintext/encrypted
contents of register r to n’th stack word;

– getu r n, getc r n – copy the plaintext/encrypted
n’th stack word to register r.

The crypto-processor assembler
contains ‘CRYPT’ pseudo-instructions
that the compiler translates to plain
RISC machine code, but which are
there to allow assembler typing to
proceed with accuracy. Box 4 lists
these succinctly. They deal with data
transfers to and from the stack area,
which are implemented using RISC
add, load and store machine instruc-
tions. However, the machine code
may access anywhere in memory,
both stack and heap, and those two ar-
eas are treated very differently by our
analysis: heap may only contain encrypted data in our design, while stack may con-
tain both encrypted and unencrypted data (a polyvalent stack is necessary to the design
because some RISC machine instructions – jumps and branches – require unencrypted
program addresses in registers, which data needs to be saved on the stack during sub-
routine calls). The extra CRYPT pseudo-instructions allow the type analysis of the as-
sembler to adequately distinguish the two areas of memory.
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Box 5. RISC assembly language.

lui r n // Set reg. content.
sb r1 n(r2) // Store byte to mem.
lb r1 n(r2) // Load byte from mem.
sw r1 n(r2) // Store word to mem.
lw r1 n(r2) // Load word from mem.
jr r // Jump to addr. in reg.
j a // Jump to addr.
jal a // Jump and link.
bnez r a // Branch if reg. �= 0.
nop // No-op, do nothing.
move r1 r2 // Copy from reg. to reg.
ori r1 r2 n // Arithmetic bitwise or.
addiu r1 r2 n // Arithmetic add op.
. . . // . . .

Embedded data n is encrypted, embedded program ad-

dresses a and register indices r are unencrypted.

The RISC part of the assembler in-
struction set is listed in Box 5. It is en-
tirely standard and translates directly
to machine code instructions.

3 Assembler Typing

This section will set out a type system
based on the c, u types for the crypto-
processor assembler code.

Most machine instructions do not
perturb the ordinary linear flow of
control through a program. These lin-
ear instructions comprise all instruc-
tions apart from jumps and branches.
When a linear instruction ia at ad-
dress a executes, control inevitably
passes afterward to the next program instruction after it in positional sequence in mem-
ory. In a RISC 32-bit MIPS [4] machine, the next instruction is at address a+4 (4 bytes
further on). To avoid prejudice we set:

Definition 2. a′ is the address of the successor instruction sited immediately beyond
the instruction ia at address a in the program code.

We will use a′ throughout this paper in place of any particular increment a+ length(ia).
Type signatures for linear assembler instructions can be expressed in the notation of

Sect. 2, as shown in Box 6. For example, the lui r n instruction sets the the content of
a register r to the encrypted value 216n (n is supplied as an encrypted value embedded
in the instruction itself), and thus its type signature is given as [ ]→ [r : c] in Box 6.

Box 6. Linear RISC+CRYPT signatures.

lui r n :: [ ]→ [r : c]
sb r1 n(r2) :: [r1, r2 : c]→ [r1, r2 : c]
lb r1 n(r2) :: [r2 : c]→ [r1, r2 : c]
sw r1 n(r2) :: [r1, r2 : c]→ [r1, r2 : c]
lw r1 n(r2) :: [r2 : c]→ [r1, r2 : c]
nop :: [ ]→ [ ]
move r1 r2 :: [r2 : x]→ [r1, r2 : x]
ori r1 r2 n :: [r2 : c]→ [r1, r2 : c]
addi r1 r2 n :: [r2 : c]→ [r1, r2 : c]
. . .
putc r n :: [r, sp : c]→ [r, sp : c]
putu r n :: [r : u, sp : c]→ [r : u, sp : c]
getc r n :: [sp : c]→ [r, sp : c]
getu r n :: [sp : c]→ [r : u, sp : c]
push n :: [sp : c]→ [sp : c]
pop n :: [sp : c]→ [sp : c]

Placing two instructions of signa-
tures t1 → t2 and t3 → t4 in se-
quence is only possible if the types
t2 and t3 can be reconciled. If type t2
says the type of register 1 is c and type
t3 says it is u, then it is not possible.
But reconciliation, if possible, yields:

Definition 3. Sequential composition:

t1 → t2 ; t3 → t4
�
=

unify(t2, t3)(t1 → t4)

where ‘unify’ delivers the variable
bindings required to reconcile pattern
t2 with t3, and applies them to the
type t1 → t4, giving the type of the
sequential composition.
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Box 7. Simple RISC+CRYPT typing rules . . .

. . . in terms of the instruction [ia] at address a and the type at
the next instruction address a′ after a by position:

T � a′ :: t1 → t2
T � a :: [ ]→ [r:c] ; t1 → t2

[lui r n]

T � a′ :: t1 → t2
T � a :: [r1, r2:c]→ [r1, r2:c] ; t1 → t2

[sb r1 n(r2)]

T � a′ :: t1 → t2
T � a :: [r2:c]→ [r1, r2:c] ; t1 → t2

[lb r1 n(r2)]

T � a′ :: t1 → t2
T � a :: [r1, r2:c]→ [r1, r2:c] ; t1 → t2

[sw r1 n(r2)]

T � a′ :: t1 → t2
T � a :: [r2:c]→ [r1, r2:c] ; t1 → t2

[lw r1 n(r2)]

T � a :: [r:u]→ [r:u]
[jr r]

T � b :: t1 → t2
T � a :: t1 → t2

[j b]

T � b :: t1 → t2 T � a′ :: t3 → t4
T � a :: [ ]→ [ra:u] ; t1 → t2 ; t3 → t4

[jal b]

T � b[r : c] :: t1 → t2 T � a′[r : c] :: t1 → t2
T � a :: [r : c]→ [r : c] ; t1 → t2

[bnez r b]

T � a′ :: t1 → t2
T � a :: t1 → t2

[nop]

T � a′ :: t1 → t2
T � a :: [r2:x]→ [r1, r2:x] ; t1 → t2

[move r1 r2]

T � a′ :: t1 → t2
T � a :: [r2:c]→ [r1, r2:c] ; t1 → t2

[ori r1 r2 n]

T � a′ :: t1 → t2
T � a :: [r2:c]→ [r1, r2:c] ; t1 → t2

[addiu r1 r2 n]

. . .

T � a′ :: t1 → t2
T � a :: [r, sp:c]→ [r, sp:c] ; t1 → t2

[putc r n]

T � a′ :: t1 → t2
T � a :: [r:u, sp:c]→ [r:u, sp:c] ; t1 → t2

[putu r n]

T � a′ :: t1 → t2
T � a :: [sp:c]→ [r, sp:c] ; t1 → t2

[getc r n]

T � a′ :: t1 → t2
T � a :: [sp:c]→ [r:u, sp:c] ; t1 → t2

[getu r n]

T � a′ :: t1 → t2
T � a :: [sp:c]→ [sp:c] ; t1 → t2

[push n]

T � a′ :: t1 → t2
T � a :: [sp:c]→ [sp:c] ; t1 → t2

[pop n]

Other program type calcu-
lations are more complicated.
In general two type patterns t1,
t2 (written ‘t1 → t2’) have to
be developed for every instruc-
tion address a in a program:
t1 is the most general register
type pattern that the instruction
may validly encounter when it
starts; t2 is that which subse-
quently obtains at program ter-
mination (after the instruction
at some address b). For a sub-
routine, exit is just after the jr
that returns control to caller.

Definition 4. A collection of
types t1 → t2 indexed by entry
addresses a is called a theory.
We write

T � a :: t1 → t2

for ‘theory T lists the type
t1 → t2 against address a’.

In an actual program run, the
register type pattern encoun-
tered by any particular instruc-
tion ia at address a may be
strictly less general than the
type t1 recorded in theory T .
It will be the result σ(t1) of
a substitution σ for type vari-
ables in t1. The register type
pattern at the end of the run
will then match σ(t2).

The deduction rules of a
type theory T for our crypto-
processor are given in Box 7.
Each rule is associated with a
single program address a, and the instruction ia located at that address. For the branch
rule, both possible continuations after the branch test must give rise to the same register
type pattern at program exit. The branch test requires an encrypted datum in register r
and the following notation helps express the rule succinctly:

Definition 5. T � b[r : t] :: t1 → t2
�
= T � b :: t3 → t4

where t3 → t4 is such that [r : t]→ [r : t] ; t1 → t2 = [r : t]→ [r : t] ; t3 → t4.

(two branch types become equal after substituting t for the type of r on entry to both).



Typed Assembler for a RISC Crypto-Processor 27

4 The Basic Algorithm

Box 8. Altered rules . . .

. . . for calculating the fixpoint type theory Tn = Tn−1 of a program, in
terms of the instruction [ia] at address a and the following instruction ad-
dress a′. All other rules from Box 7 have Tn substituted for T throughout.

T0 � a :: [0:xa0, 1:xa1, . . . ]→ [0:ya0, 1:ya1, . . . ]
[∗]

Tn−1 � b :: t1 → t2
Tn � a :: t1 → t2

[j b, b ≤ a]

Tn−1 � b[r : c] :: t1 → t2 Tn � a′[r:c] :: t1 → t2
Tn � a :: [r:c]→ [r:c] ; t1 → t2

[bnez r b, b ≤ a]

Tn−1 � b :: t1 → t2 Tn � a′ :: t3 → t4
Tn � a :: [ ]→ [ra : u] ; t1 → t2 ; t3 → t4

[jal b]

Calculating the the-
ory T that provides
the type patterns at
every point in a piece
of code is not straight-
forward. Loops set up
equations that cannot
be solved by substitu-
tion and a fixpoint ap-
proach is needed.

To that end, define
Tn as the n’th itera-
tion of a series lead-
ing to the final theory T that is a fixpoint of the iteration. Initially, the theory assigns to
address a the ‘any’ pattern, in which all registers are bound to different type variables
and inputs are not related to outputs (rule [*] in Box 8). A theory Tn−1 in the sequence
is used to help construct the next theory Tn, n > 0. by substitution for free variables in
the types at each address a, as shown in Box 8. In all other cases, the rules are just as
given in Box 7 but with T replaced with Tn throughout.

When no improvement is obtained from Tn−1 to Tn at any address a, then the fix-
point theory T has been reached. Substituting T for Tn and Tn−1 in Box 8 shows that
the fixpoint T satisfies the rules of Box 7. There are only a finite number of proper sub-
stitutions possible as steps of the algorithm, so the iteration does terminate. In practice
the number of iterations required is approximately the number of backward jumps and
branches plus subroutine calls in the code.

5 Taking Account of the Stack

Although we have supplied a type system, it is not the case that, as is, the system con-
strains a type-checked program to be type-safe. The problem is evident in the fragment:

putu t1 0; getc t1 0

which writes an unencrypted value to the stack and then recovers the same datum as
an encrypted value. The type of register t1 changes from u to c yet the content of the
register does not change. The getc instruction encounters an unencrypted value on the
stack where it expects an encrypted value, yet the fragment type-checks. ‘Typeable’ via
the system given so far means that code is type-safe for the crypto-processor only under
the hypothesis that the stack operations in the code are independently type-safe.

To remove that additional assumption, the types of the values in different stack slots
have to be tracked. The size of the stack will from now on be denoted by an annotation
on the right side of a list of register types [r1 : t1, r2 : t2, . . . ]

d
k. The subscript k indicates

the list is k ≥ 32 long, and the last k− 32 list entries represent the stack slots, while the
first 32 represent the registers proper. The size d ≤ k − 32 of the current stack frame



28 P.T. Breuer and J. Bowen

is indicated by the superscript on the list. Writing to the n’th from the bottom word on
the stack in the current frame with putu r n accesses the n’th of the last d list entries,
which is entry number k − d+ n in the list.

Box 9. Extended type rules . . .

. . . which track types through the stack. The other rules of Box 7 uniformly
have �dk added to the type assignment lists, indicating that the list is of
length k and the last d entries represent the current stack frame (the first
32 of k are the registers), and is unchanged through the rule. The rules
are for instruction [ia] at address a in terms of the type at the following
program address a′.

T�a′ ::t1�dk→t2�d
′

k′

T�a ::[r:u]dk→[r:u, k−d+n:u]dk ; t1�dk→t2�d
′

k′
[putu r n]

T�a′ ::t1�dk→t2�d
′

k′

T�a ::[r:c]dk→[r:c, k−d+n:c]dk ; t1�dk→t2�d
′

k′
[putc r n]

T�a′ ::t1�dk→t2�d
′

k′

T�a ::[k−d+n:u]dk→[r:u, k−d+n:u]dk ; t1�dk→t2�d
′

k′
[getu r n]

T�a′ ::t1�dk→t2�d
′

k′

T�a ::[k−d+n:c]dk→[r:c, k−d+n:c]dk ; t1�dk→t2�d
′

k′
[getc r n]

T�a′ ::t1�d+n
k+n→t2�d

′
k′

T�a ::[ ]dk→[k:xk . . . k+n−1:xk+n−1]
d+n
k+n ; t1�d+n

k+n→t2�d
′

k′
[pushn]

T�a′ ::t1�d−n
k−n→t2�d

′
k′

T�a ::[k−n:xk−n . . . k−1:xk−1]
d
k→[ ]d−n

k−n ; t1�d−n
k−n→t2�d

′
k′

[popn]

T�b ::t1�d32,d→t2�d32,d T�a′ ::t3�dk→t4�d
′

k′

T�a ::[ ]dk→[ra:u]dk ; t1�dk→t2�dk ; t3�dk→t4�d
′

k′
[jal b]

The type rules of
Box 7 are altered
as shown in Box 9.
In particular, the evi-
dently too-loose typ-
ing given for putu,
getu in Box 7 is
mended here so that
getu requires to act on
a stack slot of type
u, and putu creates a
stack slot of type u.

All other rules of
Box 7 uniformly have
�dk added to the type
lists, indicating that
the type list is of
length k and the last
d entries represent the
current stack frame
(the first 32 of k are
the registers) and the
list length/stack size
is unchanged by the rule. The ‘subroutine return’ instruction jr in particular does not
modify the stack – it is the jal ‘subroutine call’ rule that does the job. It drops consider-
ation of all callee frames for the parent.

Proposition 1. In the type system of Box 9 for the crypto-processor of Sect. 1, type-
checked implies type-safe for RISC+CRYPT assembler programs.

Proof. (Sketch) ‘Notice’ that the type rules and the algorithm that computes types from
them together define an abstract interpretation [3] of the program: the values obtained
in a program run match the type patterns computed, if the typing algorithm succeeds.
Then the values obtained match the typing rule corresponding to each instruction in
the program, since the algorithm works by refining each rule at each site where it is
applicable and only one rule is applicable at each program address, that corresponding
to the instruction located there. If a set of values obtained during execution does not
match the instruction’s input expectations, then – since it does match the input of the
corresponding typing rule – the typing rule concerned permits inputs that do not match
the instruction’s expectations. But each typing rule can be seen by inspection not to
allow inputs that are outside the corresponding instruction’s expected range. That proves
the result by contradiction. ��
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Where this argument falls down for the case of the basic type system of Sect. 3 and
Box 7 is that its rules for getc, getu do permit inputs on the stack that do not match the
expected range – an encrypted value is expected in the referenced stack slot for getc,
but an unencrypted value is allowed by that type system, for example. The system of
Box 9 mends that defect by tracking types through the stack.

6 Conclusion

We have introduced a RISC ‘crypto-processor’ that processes data kept in encrypted
form in memory and registers, along with a type-checking algorithm for its assembly
language. A type-checked program is type-safe: at run-time, encrypted data is always
encountered by every instruction that expects encrypted data, and unencrypted data is
always encountered by every instruction that expects unencrypted data.

7 Future Work

It turns out that it is possible to type-check RISC machine code directly by adapting the
type system here from assembler to machine code. That enables a pre-existing machine
code program to be type-checked, encrypted instruction by instruction, and run safely
on our crypto-processor in a potentially hostile environment, the encrypted results of the
computation being returned securely to the remote owner. The patent [1] contends that
the processor design is secure even in simulation, making its (virtual) export feasible.
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Abstract. Declarative policies are a common means to manage the se-
curity of complex IT environments and they belong to different, het-
erogeneous classes (access control, filtering, data protection, etc.). Their
enforcement requires the selection and configuration of appropriate en-
forcement mechanisms whose dependencies in a given environment may
result in conflicts typically not foreseeable at policy design time. Such
conflicts may cause security vulnerabilities and non compliance; their
identification and correction is costly. Detecting transversal policy con-
flicts, i.e., conflicts happening across different policy classes, constitutes
a challenging problem, and this work makes a step forward towards its
formalization.

1 Introduction

Security management is a key task for organizations offering and consuming ser-
vices through large IT infrastructures. Declarative security policies constitute
the usual means to specify the intended behavior of the different security mech-
anisms that have to be put in place in such organizations. The process to design
these policies starts from an analysis of the security requirements stemming from
multiple sources like customers, business partners, internal regulations, etc. This
analysis will point out the different security threats related to a system, hereby
identifying a number of security requirements like: resource access control, in-
formation protection (confidentiality and integrity), privacy safeguarding, etc.
Countermeasures are then selected and put in place in order to effectively meet
the defined security objectives. The intended behavior of these countermeasures
is described by different security policies. Policies are enforced by security mech-
anisms often spread over several different IT architectural layers, for instance
network filtering, transport or message level data encryption, application specific
access control, and must cooperate in a coherent fashion to avoid misbehaviors
which may lead to limited functionality or security breaches.

We identify several types or “classes” of security properties: authorization,
access control, usage control/obligation, authentication, data protection, filter-
ing, etc. For each type several security policies may exist to describe the security
rules. When these policies are deployed and enforced at the same time within the
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same landscape there is a high probability to observe some misbehaviors during
the runtime. This is due to the existence of incompatibilities or conflicts among
security rules arising within the enforcement phase that are not predictable at
design time, when the configuration of the landscape is only partially known. In
addition, policies are likely to be authored by separate entities because (i) dif-
ferent organizations or domains have to interact and connect with each other, or
(ii) they belong to different classes and thus concern distinct domains. Although
the detection of policy conflicts is largely addressed in the literature especially
when conflicts happen between the same class of policies, to our knowledge there
is no solution focused on addressing the conflicts that can happen between dif-
ferent classes, for example when a data protection policy requires encrypting a
channel with HTTPS/SSL and a firewall needs to perform payload inspection.

In this preliminary work we propose an approach to detect conflicts and in-
coherences between policies of different classes. Section 2 presents related work
on policy conflict detection. Section 3 introduces a motivating scenario together
with some examples of policies and possible transversal conflicts. In Section 4 we
first define a Domain Description Model (DDM) describing the interaction be-
tween different classes of policies and capturing the interdependencies between
them. Second we provide a formal representation of policies belonging to dif-
ferent classes. This representation called Class-Specific Policy Model (CSPM)
tends to extract the inter-dependent parameters within the different classes of
policies. Finally, we define a Conflict Specification Model (CSM) where we de-
clare the different transversal conflicts that can be detected. We hereby formal-
ize the transversal conflict detection problem as the satisfiability check of the
CSM. A preliminary design for our framework is described throughout the paper,
mapping all its parts to an illustrative first order language. Section 5 outlines
conclusions and future work.

2 Related Work

Related work on policy conflict detection mainly focuses on conflicts happening
within a single class of policies. We instead address conflicts among different
classes. In [1] authors propose a classification of firewall rules anomalies and
algorithms for detecting them. However the impact that firewall rules may have
on other classes of security policies is not considered, and the scope is limited to
network-level filtering, without considering application-layer packet inspection.

Access control policy analysis have been also extensively studied in literature.
The Ponder policy language can be formalized in Event Calculus allowing for
detecting conflicts by the means of abductive reasoning [3]. Formalizations for
non-procedural fragments of standardization and industry oriented policy lan-
guages like XACML [8] have been as well proposed. These approaches allow for
various kinds of policy analysis, including conflict detection. However they are
mainly focused on access control, which constitutes only one of our possible pol-
icy classes. In [4] authors approach the problem of composing policies expressed
in different languages providing a common generic language to express them
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Fig. 1. ACME system

and a set of algebraic operators to specify the composition. In contrast we let
the domain description determine the way different policies relate to each other,
instead of explicitly relying on composition operators.

Data protection policies specifying confidentiality and integrity security re-
quirements on data have also been analyzed for conflicts due to composition,
for instance [11] leverage logic programming to check for consistency of WS-
SecurityPolicy rules in the context of web services composition.

In [6] the definition of policy conflict is left up to the policy author. This
work has similar characteristics to ours, providing a declarative approach for the
definition of conflict types and encompassing conflicts among policies possibly
belonging to different classes. Our approach is complementary as we explicitly
focus on more kinds of transversal conflicts.

3 Use Case

A simplified but reasonably realistic scenario used to motivate and illustrate the
contributions of this paper is as follows:

The imaginary service provider ACME offers an eInvoice service to B2B cus-
tomers allowing them to securely exchange electronic invoices with their business
partners, and to store them in a long term archive. Figure 1 outlines the system
used to implement and deliver this service: ACME customers submit raw invoice
data to a Web service, which is transformed into a PDF document, that is then
digitally signed by the 3rd party service provider CERT, a company creating
signatures compliant with respective national regulations. Business partners of
ACME customers can access their invoices through a Web application. Both eIn-
voice components, Web service and Web application, run in an Internet-facing
subnet. Other system components comprise the data center subnet with the long
term archive and a user management system for eInvoice account credentials, and
the employee subnet from where operations staff performs system maintenance.
Traffic between subnets is mediated by application-level firewalls.

ACME faces many security and legal requirements stemming from a variety of
different source, e.g., customers, suppliers, national regulations, or internal risk
management. Table 1 presents a fraction of ACME’s security policies addressing
such requirements. The single policies already identify actors and components



Transversal Policy Conflict Detection 33

Table 1. ACME security policy

Cod. Policy Policy Class Motivation Enforcement

Obl2
Archived invoices must be
deleted according to maximum
retention times

Obligation
Legal
require-
ment

ACME account managers manu-
ally trigger the deletion process for
their respective accounts

Fil1
Document exchanges with se-
lected customers must be virus-
checked

Filtering
Customer
SLA

Perform virus scan at the border
firewall for selected HTTP content-
types

Fil3
It shall not be possible to estab-
lish outbound TCP connections
from within internal networks

Filtering
Acceptable
use policy

Block outbound connection re-
quests at the border firewall

AuC1
Use of the CERT signature ser-
vice requires prior authentica-
tion

Authenti-
cation

CERT
service
specific.

CERT’s users must provide a 3rd
party IDP SAML authentication
token

AuZ1
Only authorized account man-
agers shall have access to their
customers’ invoice archives

Authori-
zation

ACME
service
specific.

File system access on the archive
share is restricted to user groups
maintained in ACME’s local IDM

DaP1

Invoice information (raw, lay-
outed, and signed) must remain
confidential when sent over the
Internet

Data
protec-
tion

Data
confiden-
tiality

Web service communication is pro-
tected by WS-Security, access to
critical elements of the Web appli-
cation by SSL

Table 2. Conflicts in ACME policy and enforcement

Cod. Conflict Impact or Threat Correction

Fil3,
AuC1

Rigorous settings of the border firewall for
outbound connections disrupt access to ex-
ternal authentication provider

Service availability or data in-
tegrity, depending on the applica-
tion’s error handling

Re-configure
firewall

Fil1,
DaP1

Border firewall fails virus scanning due to
encrypted payload

Non-compliance with customer
SLA

Partial sys-
tem re-design

Obl2,
AuZ1

Deletion of long term archives fails, due to
wrong group membership of account man-
agers in ACME’s IDM

Non-compliance with customer
SLA, information disclosure

Re-assign
user groups

specific to ACME’s organizational structure and service implementation, i.e.,
system. The policies expressed in natural language were specified by different
stakeholders, and were taken as input for the selection and configuration of
appropriate enforcement mechanisms, an activity concerning different system
architecture layers, and again done by different stakeholders.

The specification of stated policies, the alignment of various stakeholders,
and the selection and configuration of enforcement mechanisms is a tedious and
error-prone process, often involving manual work and lacking tool-support. Any
failure in this process can disrupt operation, violate required security properties
or result in non-compliance, and on-going changes at both requirements and
system-side do not facilitate this difficulty either. In fact, deficiencies of these
processes are responsible for a significant share of IT operations costs [9], and for
a significant share of vulnerabilities present in real-world systems [2]. In Tab. 2
we collected a selection of policy and enforcement conflicts that may occur at
ACME, some of them can be fixed by means of configuration, others require
partial system re-design.
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4 Transversal Conflict Detection

Transversal conflicts are inconsistencies due to the implicit composition of secu-
rity policies belonging to different classes and expressed in different languages,
driven by the environment on which they apply. Informally, the Obl2, AuZ1

conflict in Tab. 2 arises since, at the same time, a user must access a service be-
cause of the obligation policies, but cannot access it because of the filtering rule.
Details like IP addresses, network ports or protocols, access control actions or
targets are not directly used for conflict detection; in contrast they are essential
in order to drive both the must access and cannot access conclusions according
to (i) the conflicting policies and (ii) the status of their application domain.
Our approach towards the formalization of transversal policy conflict detection
therefore aims at providing a logic framework where this problem is equivalent
to satisfiability checking. This framework is composed by a Domain Descrip-
tion Model (DDM), several Class-Specific Policy Models (CSPMs) and a
Conflict Specification Model (CSM).

4.1 Domain Description Model

The DDM enables to specify the interlinked components of the policy-managed
infrastructure. Figure 2 depicts a UML representation of the DDM meta-model.

We now describe a possible first order logic representation of such meta-model,
in the following we will use bold font-face for predicates, italic for universally
quantified variables and typewriter style for constants. Predicates Proto(p) and
DepOn(p, p′) can represent a generic network protocol stack, in which protocols
belonging to upper ISO/OSI layers depend on (are encapsulated by) lower layers
of the stack. Protocols have a number of Fields like the source and destination
addresses for IP, the port number for TCP or the elements of a HTTP message
(method, URI, headers, body, etc.). Predicates Fld(f), Srv(s) and Bnd(s, f, v)
describe how services are linked to the set of protocols through which they are
accessible on the network. This is done by specifying for each service s the ac-
tual values which protocol fields are bounded to ((f, v) couples), like the services’
IP address when binding to the IP destination address field or their URI when
binding to the respective HTTP field. Subjects are represented via the Sbj(s)
predicate and can be as well bounded to protocol fields, hereby modeling their
interactions with services over the network. Similar predicates are defined for
roles, actions and resources. Services and users are located in network zones

Fig. 2. Domain Description UML meta-model
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by the means of the two predicates Zone(z, {n1, ..., nn}) and InZ(s, z), spec-
ifying that the zone z encompasses a number of IP subnets having network
addresses n1 to nn and harbors a service s. Zones connect to each other through
firewalls (Fw(f) predicate) and firewall interfaces (FwIf(i) predicate). Finally
FwHasIf(f, i) and ZIf (z, i) link together zones, interfaces and firewalls.

New predicates can be inferred providing meaningful deductive capabilities
we require for our DDM. For instance SrvIf (i, s, f, v) expresses that a service
s communicates through an interface i, hereby using a protocol who’s field f
is bound to value v. We also define the UpLayer+ predicate as the transitive
closure of DepOn and therefore inferred for all the protocols p lying above the
protocol p′′ in the stack

Srv(s) ∧ FwIf (i) ∧ ZIf (z, i) ∧ InZ(s, z) ∧Bnd(s, f, v) → SrvIf (i, s, f, v)

DepOn(p, p′) → UpLayer+(p′, p)

DepOn(p, p′) ∧UpLayer+(p′′, p′) → UpLayer+(p′′, p) .

(1)

Building such a domain model of a realistic operating infrastructure is in general
a complex task, as heterogeneous pieces of information need to be fetched and
integrated. However this activity can be partially automated, for instance infor-
mation about network topology or user accounts can be retrieved from network
discovery and configuration management tools [7]. Building the model of ser-
vices protocols could instead be eased by leveraging the work carried on by [10],
providing a language for representing the Internet protocol stack.

4.2 Class-Specific Policy Models

The purpose of the specific policy languages is to provide a declarative formal
representation for each policy class, being as close as possible to the typical
languages in which they are commonly expressed.

Authorization and Obligation policies. We derive the definition of authoriza-
tion and obligation policies from the OASIS XACML specification [12]. We only
consider declarative parts and we do not model XACML’s grouping structures
(like PolicySet), as well as the policy combination algorithms. We represent
authorizations by the means of the AuthZ

(
s, a, r, [+|−]

)
predicate, stating that

a subject s is either authorized or forbidden to perform action a on resource
r, depending on the value of the result parameter being either permit (+) or
deny (−). Obligations in XACML are attached to authorization policies, de-
scribing the actions that should be performed by the data controller after get-
ting the access control decision (e.g., retention time, notification, etc). Since the
XACML specification does not define the semantics of such actions, we refer to
the PPL language [13], which extends XACML’s obligation definition according
to the type of access to data and the purpose of usage. We assert obligations as
Oblig(s, a, r), meaning that subject s must perform action a on resource r.

Filtering. In this paper we focus on two classes of filtering policies, namely
network layer and web application layer filtering, which are likely to appear in
real scenarios. A network layer filtering rule L3F

(
is, id, as, ad, p, ps, pd, [+|−]

)

applies between a source and destination interfaces (is and id) of a firewall and
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state whether source and destination IP addresses (as and ad) are allowed (+)
or denied (−) to communicate on source and destination ports (ps and pd) for
a given transport protocol (p). Web application filtering policies are instead
stemmed from typical rule languages of web application firewall devices, like
the Cisco ACE Web Application Firewall products [5], and are represented by
the predicate WAF

(
is, id, f, o, v, [+|−]

)
. Different parts of the application layer

payload may be inspected by the means of rules comparing specific protocol
fields (f) with fixed values (v) by the means of comparison operators (o).

Data Protection. The data protection policies we consider specify how services
enforce confidentiality and integrity on data exchanged over the network. The
DP

(
s, p, c, i

)
predicate states that a service s performs encryption and message

authentication with a cipher suite identified by the couple of ground terms c
(confidentiality) and i (integrity) over messages exchanged on protocol p.

Example. The following example shows a representation of the filtering and
data protection policies stated in Tab. 1 according to the above formalization

Fil1: WAF
(
ext, dmz, HTTP POST, sig, ‘signature regexp’,−

)

Fil3: L3F
(
dmz, ext, any, any, TCP, any, any,−

)

Dap1: DP
(
‘eInvoice WebApp’, HTTPS, AES-256, SHA1) .

(2)

4.3 Conflict Specification Model

Transversal policy conflicts, as the ones listed in Tab. 2, can be seen as incompat-
ibilities among properties abstracting away the concrete details of the different
CSPMs. We describe these properties by the means of two CSM predicates,
namely (¬)access(u, s) and (¬)inspect(i, p). The former states whether a sub-
ject u accesses or not a service s, the latter represents the ability or denial to
perform traffic inspection on protocol p at the interface i. We then map transver-
sal conflict detection to the consistency checking problem of CSM formulas.

In order to perform this mapping, we need to link each policy to a CSM pred-
icate, leveraging the domain information as it provides the source of interdepen-
dencies between policy classes. The following rules exemplify the expressivity of
such a language and capture the particular kind of transversal conflicts happen-
ing between web application filtering and data protection policies, such as the
Fil1, Dap1 conflict in Tab. 2

FwIf(i) ∧Proto(p) ∧ Fld(f) ∧ FldOf(f, p) ∧WAF
(
, i, f, , ,

)
→ inspect(i, p)

FwIf(i) ∧Proto(p′) ∧UpLayer+(p′, p) ∧ Srv(s) ∧ Fld(f) ∧ FldOf(f, p′)

∧SrvIf (i, s, f, ) ∧DP(s, p′, , ) → ¬inspect(i, p) .

(3)

In case, given a set of DDM and CSPM predicates, both inspect(i, p) and
¬inspect(i, p) can be inferred, this kind of conflict is detected, being generated
by the policies in the left hand side of the rules.
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5 Conclusion

In this paper we proposed to address the problem of detecting transversal policy
conflicts, happening whenever policies belonging to different classes cannot be
enforced in the same environment because they imply contemporary conflicting
behaviors. We herewith complement existing related work on the detection of
conflicts between security policies within single classes of policies.

We proposed a framework composed by a Domain Description Model (DDM),
several Class-Specific Policy Models (CSPMs) and a Conflict Specification Model
(CSM). Policy conflicts are detected as inconsistencies between CSM predicates,
inferred by rules linking the CSPMs with the DDM. Our approach is extensible
with respect to both the set of encompassed policy classes and to the number of
detected conflicts, since new CSPMs and new inference rules for conflict detection
can be added independently to the framework. Policy designers can therefore
specify new conflicts according to their specific security needs.

On-going and future work comprise the identification of a decidable fragment
of logic able to capture the requirement of the proposed strawman design, such as
Datalog (possibly with negation). We also plan to cover more realistic scenarios
by enhancing the expressive power of our domain description and policy models.
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Abstract. Mobile devices are having a profound impact on how services
can be delivered and how information can be shared. Sensitive informa-
tion collected in remote communities can be relayed to local health care
centers and from there to the decision makers who are thus empowered
to make timely decisions. However, many of these systems do not system-
atically address very important security issues which are critical when
dealing with such sensitive and private information.

In this paper we analyze implementation challenges of a proposed se-
curity protocol based on the Java ME platform. The protocol presents a
flexible secure solution that encapsulates data for storage and transmis-
sion without requiring significant changes in the existing mobile client
application. The secure solution offers a cost-effective way for ensuring
data confidentiality, both when stored on the mobile device and when
transmitted to the server. In addition, it offers data integrity, off-line and
on-line authentication, account and data recovery mechanisms, multi-
user management and flexible secure configuration. A prototype of our
secure solution has been integrated with openXdata.

Keywords: Mobile Data Collection Systems, Mobile Security, secure
communication protocols, secure mobile data storage, secure mobile data
transmission, Java ME, openXdata, HTTPS, JAD.

1 Introduction

There are already a number of systems that allow data collection in the health
sector using mobile phones and provide a server component to manage the col-
lected data. However, none of these systems has a complete security solution
to guarantee data confidentiality, integrity, availability and privacy both on the
client and on the server side. In this paper, we present the challenges in imple-
menting the openXSecureAPI (which from now on we will refer to as simply
API), based on the secure protocol proposed in [5], which can be used to add a
security layer in existing Mobile Data Collection Systems (MDCS).
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Here, we focus on the mobile side of the API, which is developed for Java
Mobile Edition(Java ME)[7] based applications and assumes that the main use of
the application is the collection of data by an authorized user through predefined
forms. In other words, we do not consider systems where data is gathered by
automated sensing systems. The API is designed by considering several security
challenges in mobile data collection where low-end mobile phones are deployed
and the projects run on very constrained budgets. The details can be found
in [5].

For this work we collaborated with openXdata [6], a MDCS that is primar-
ily designed for data collection using low-end Java-enabled phones in low-budget
settings. The openXdata community shared with us their field experience regard-
ing the deployment of their mobile data collection tools and various technical
details of their client and server applications.

The challenges and solutions are covered in Section 2, where, in order to make
this article self-contained, we also mention how the different parts of the API
reflect the underlying protocol, and which security and usability requirements are
addressed. Finally, we present some experimental results we obtained by testing
a basic data collection client that uses our API on various mobile devices. In
this paper we assume that the reader is familiar with Java ME technology and
terminology.

2 Implementation Challenges and Solutions

Most of the challenges we faced during the implementation required finding the
right balance between flexibility, efficiency and usability, while not compromising
security. In general, we decided to give more emphasis to flexibility, in order to
create an API that is easy to use and integrate with different clients, at the cost
of some efficiency. In the following sections, we discuss some of issues we consider
to be highly relevant.

2.1 Cryptography API Providers

Early versions of Java ME did not support a cryptography API. However, since
the introduction of MIDP 2.0, the Security and Trust Services API (SATSA) has
been developed and added to the Java ME platform as an optional package that
provides some basic cryptographic primitives. Besides, since it is implemented
as part of the phone libraries, its use does not affect the memory footprint of the
application. Unfortunately, very few low-end mobile phones actually support
it. On the other hand, Bouncy Castle (BC)[4] provides a flexible lightweight
cryptography API which is extensively used in Java ME applications. Since it
is an external API, it allows us to develop device independent solutions, but its
libraries can add a significant memory overhead.

In order to allow for future compatibility, we opted for an hybrid solution. Our
API provides an interface that defines the required cryptographic operations, but
leave the actual implementation open, with BC as default provider. However, if
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the phone supports the SATSA package, our API can automatically switch to
that implementation. So, even though memory footprint is not reduced (BC is
always loaded anyway), one can gain in performance by using the phone built-in
libraries. Using two different implementations, means also that we are forced to
use only algorithms supported by both libraries. In particular: RSA for public key
encryption, AES in padded CBCmode with initializing vector (IV) for symmetric
cryptography, SHA1 digest, Hash-based Message Authentication Code (HMAC)
based on SHA1 digest. Only BC provides an adequate Pseudo Random Number
Generator (PNRG) and Password Based Encryption based on PKCS#5.

2.2 Key Generation

A critical issue when using cryptography on a mobile phone is the generation of
good random keys, since mobile phones do not have good sources of entropy [1],
and even if they have, J2ME might lack the necessary libraries to access them.
In the proposed solution, we generate a strong seed on the server and send it
securely to the client whenever possible, so that strong cryptographic keys can
be generated. Every user will have their personal set of seeds stored encrypted
in their key store, so that the PNRG can be seeded also at boot time, and in a
different way for each user. This solution avoids putting the burden of generating
the seed on the user by pressing random keys or playing a game, or turning on
the camera or the microphone to collect entropy, as it has been suggested in the
literature.

2.3 Secure Data Upload and Download

The API is designed to be flexible and support both HTTPS and the pro-
tocol proposed in [5]. We offer a SecureHttpConnection class that can be
wrapped around a HttpConnection. If the connection is HTTPS, the Secure-

HttpConnection will behave in the same way as a normal HttpsConnection
object would. If however it is not HTTPS, any request headers or data written
to the connections output stream will be encrypted prior to being sent to the
server by using the protocol presented in [5]. The API is designed so that the
client developer would use the SecureHttpConnection object in the same way
as an HttpConnection object. This makes for easy and transparent integration
into existing systems. We are able to create a secure tunnel by changing only
two lines of code in the existing openXdata client. The following snippet shows
openXdata client before the integration (no encryption is used):

HttpConnection con = (HttpConnection)Connector.open(URL);

((HttpConnection)con).setRequestMethod(POST);

This snippet shows openXdata client after integration with the secure API:

HttpConnection con = (HttpConnection)Connector.open(URL);

SecureHttpConnection secCon = new SecureHttpConnection(con,

SecureHttpConnection.RequestType);

secCon.setRequestMethod(POST);
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By using the SecureHttpConnection class, the client can now provide a secure
data transfer for any project whether they can afford to use SSL certificates (and
therefore HTTPS) or not.

Initially we had thought to exploit the fact that data is encrypted on the
phone, and send it as it was, to avoid further encryption and decryption op-
erations. However, that could not be done without significant changes to the
existing client code, and without exposing many cryptographic operations to
the developers. Not to mention that the same key used for the storage would be
re-used for transmission, raising security concerns and key management issues.
Hence, even if this could give better performance, it could also affect the security
of the API and its usability. We chose, therefore, to simply wrap the data sent
from the client in a secure connection, which, despite some extra traffic, allows
also for a complete decoupling between the secure layer and the client requests.

Notice also the second parameter of the SecureHttpConnection constructor:
SecureHttpConnection.RequestType. When this parameter is specified, our
API can automatically generate some predefined requests that can be used for
various operations: user registration; password recovery and server authentica-
tion as described in [5].

2.4 Secure Storage

The storage has been designed to accommodate typical scenarios in mobile data
collection. In particular that multiple users should be allowed to use the same
mobile device, that the same user can use multiple mobile devices and that
Internet access might always not be available. This means that mobile devices
can no longer be considered private or personal to an user and that most of the
data collection might have to be done off-line. From a security perspective this
translates into the following concerns:

1. A mobile device must store some identification token to authenticate users
off-line.

2. If a user loses the password, other users on the same device and their data
should not be affected.

3. If users change their password on the server, possibly from a web application,
the access to the mobile device should not be compromised.

4. Even if the password is lost, it should always be possible to recover the
encrypted data stored on the mobile phone by some authorized entity.

A scheme that satisfies all the above requirements is described in [5] and im-
plemented in the API, which offers tools to register a new user so that a new
personal secure storage is initialized according to such scheme. The client ap-
plication simply needs to pass username and password to our registerUser()
method, and thereafter use our login() method to get access to a user’s data.
The login method authenticates the user and creates a session object with a
user’s key, that the API will use to handle the secure stores and secure HTTP
sessions. This is also independent from the authentication method used on the
server. The data is encrypted with symmetric encryption, and the encryption
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key is protected by a password-based key. This means that losing the password
does not prevent access to the data if the data encryption key has been saved, for
example, on the server. Notice, however, that the overall security of the data still
depends on the strength of the password, and as long as off-line local authenti-
cation is required on the mobile phone, and smart cards are not supported by
the phone, this is a problem that cannot be solved. When it comes to the actual
storage of data in the RMS analogue to the SecureHttpConnection class, we
offer a SecureRecordStore class, that can be used to wrap the data in a secure
way. Every write/read operation will, respectively, encrypt the input data before
writing it in the actual RecordStore object, and decrypt it before returning it
to the client. The API also takes care of checking whether the current user has
permissions to write in that storage and handles the corresponding keys. All of
this happens completely transparent way for the client.

The drawback of this approach is that the user has no control over the data
encryption, so, every time something is read or written from the secure store, a
cryptographic operation is performed. This can be a computational overhead if a
search must be done across the stored data, since several decryption operations
are required. This happens, for instance, when a menu must be generated to show
the users which form values have been saved in the record store. To mitigate this
problem, we offer to store the data with a label that describes it. All the labels
are stored as a list in a single encrypted record, so that only this list needs to
be decrypted to generate a menu, rather than all the records.

One advantage, instead, is that the client is not forced to pre-process the
data and store it in a specific format or in a dedicated record store. The only
assumption we make, is that each user has a dedicated record store, so that a
unique key can be assigned to it. This makes the key and permission management
much easier for the API.

An alternative solution we tested was to offer methods that took a byte stream
and returned an object containing the encrypted stream plus a set of fields to
manipulate it, so that the developer could have direct control over the encrypted
data. However this idea was discarded because it would have required substan-
tial refactoring in the existing client, and it could have potentially introduced
security issues if the data were manipulated incorrectly.

2.5 Modularity of the API

While designing the API we focused also on making it modular. We tried to make
the different packages that constitutes the API as independent as possible, so
that a client using only the secure communication, would not import the secure
storage libraries and vice-versa, thus minimizing the final size of the application.

2.6 API Integration

Figure 1 shows how our API creates a secure layer on top of the existing appli-
cation layer, taking as example our work with the openXdata client.
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Fig. 1. Openxdata - secure API integration architecture

3 Preliminary Performance Test

In this section we report the results of some preliminary tests we ran in order to
analyze the performance of the API on devices with different hardware specifica-
tions and price categories. The results are summarized in Table 1. Note that the
phones used for the benchmark are phones that are most likely to be deployed
on the field by openXdata. No smart phones are therefore considered. Also what
we define as ”powerful” phones, are only there to put the other results into per-
spective, since they are not likely to be used due to their high cost. It is clear
that with the given parameters the performance of the API is barely acceptable
on the least powerful phone (2760), but it already has a more than acceptable
performance compared to an equally cheap and only slightly more powerful de-
vice (2330c). It is interesting that the processor speed (3rd row in the table) is
not always the most important factor. The most expensive and powerful mobile
phone (E-63) we used in the test, has very poor performance due to the high
amount of time used to create new records in the record store (4th row in the
table). We have not tested our protocol when a HTTPS connection is used, but
a simple SSL handshake took on average 12 seconds on all the devices tested,
which is comparable with a complete Server Authentication step of the protocol
in [5] on the slowest phone. It is also clear that the bottle neck in the various
transactions is the RSA encryption, but no much optimization can be done in
this regard. The key cannot be reduced to less then 960 bits, i.e., the smallest
size required to guarantee that all protocol requests can be encrypted, and, in
general, it is not recommended to use less than 1024 bit anyway.
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Table 1. Test results

Phone model (Nokia) 2760 2330c-2 2730c 3120c E-63

Price ($) 50 <50 89 120 180

Processor speed (Mhz) 0,8 4,6 67,7 68,8 125,7

Time to create 20 records
120 49 16 6 2573,9

of 100 bytes on the phone (ms)

RSA Encryption with 1024
3702 562 92 79 265

bits key (ms)

16 bytes AES encryption
58 19 5 5 315

of a 100 bytes form (ms)

16 bytes AES decryption
28 22 5 11 333

of a 100 bytes form (ms)

PKCS-5 password-based-encryption
878 151 18 18 344

(100 iterations) (ms)

Processing time for
11611 6306 5470 5021 11297

Sever Authentication (ms)

Processing time for
9226 6153 5392 3523 4186

User Registration (ms)

Uploading 356 bytes of forms (ms) 3895 4989 5038 3295 1588

Downloading 2880 bytes of forms (ms) 4347 2868 4424 3023 1513

4 Related Work and Conclusions

In general, all modern smart phones equipped with operative systems like Black-
berry, Android and iOS provide a crypto API to develop secure applications.
However, we are developing a secure solution for the Java ME platform, which
lacks support for any kind of data security [2,10], and we target low-end phones,
so that solutions that might be adequate for high-end phone like smart phones,
are not an option for our context.

The solution we implemented is based on a custom protocol developed by
considering the specific constraints of MDCS [5], but it makes almost no as-
sumptions about how or where data are stored, or how the communication layer
of an existing application is implemented. This guarantees wide compatibility.
Besides, the different secure solutions that it offers are very modular, and can
be used independently to fit the needs of MDCS with different security require-
ments. We have also developed our own prototype MDCS using the API, and
tested it on various phones with different settings in order to collect experimental
data on the performance of the API. The results are encouraging, since the per-
formance with the default security settings was acceptable also on very low-end
phones, and the openXdata integration is proceeding smoothly.

Other approaches to secure applications having the Java ME platform as
their target have been proposed in the literature [8,3,9], but it is easy to see
that they are all tailored for specific target applications, and they are nowhere
as extensive and flexible as our API. Besides, as far as we know, the solutions
proposed in these works have not been employed in actual systems, while our
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API is currently being used to develop a secure client for openXdata, that next
year will be deployed in the field and carefully tested in a real project. The results
from this test will be used to optimize the code and develop new features for
the API. For example, mechanisms for automatically configuring the security
settings on each device, in order to maximize security without compromising
usability, are currently being studied.

References

1. Crocker, S., Schiller, J.: RFC 4086 - randomness requirements for security (2005),
http://www.ietf.org/rfc/rfc4086.txt

2. Egeberg, T.: Storage of sensitive data in a Java enabled cell phone. Master’s thesis,
Høgskolen i Gjøvik (2006)

3. Itani, W., Kayssi, A.: J2ME application-layer end-to-end security for m-commerce.
Journal of Network and Computer Applications 27(1), 13–32 (2004)

4. T. Legion Of the Bouncy Castle, http://www.bouncycastle.org/ (accessed March
2011)

5. Mancini, F., Mughal, K., Gejibo, S., Klungsoyr, J.: Adding security to mobile data
collection. In: Proceedings of Healthcom 2011 - 13th IEEE International Conference
on e-Health Networking Applications and Services, pp. 86–89 (June 2011)

6. openXdata, http://www.openxdata.org (accessed March 2011)
7. Oracle. Java ME, http://www.oracle.com/technetwork/java/javame/index.html

(accessed March 2011)
8. Shah, S.M.A., Gul, N., Ahmad, H.F., Bahsoon, R.: Secure Storage and Commu-

nication in J2ME Based Lightweight Multi-Agent Systems. In: Nguyen, N.T., Jo,
G.-S., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2008. LNCS (LNAI), vol. 4953,
pp. 887–896. Springer, Heidelberg (2008)

9. Wang, Z., Guo, Z., Wang, Y.: Security research on j2me-based mobile payment.
IEEE Communication Society 2(2), 644–648 (2008)

10. Whitaker, B.: Problems with mobile security #1 (July 2007),
http://www.masabi.com/2007/07/13/problems-with-mobile-security-1/ (ac-
cessed March 2011)

http://www.ietf.org/rfc/rfc4086.txt
http://www.bouncycastle.org/
http://www.openxdata.org
http://www.oracle.com/technetwork/java/javame/index.html
http://www.masabi.com/2007/07/13/problems-with-mobile-security-1/


Runtime Enforcement of Information Flow

Security in Tree Manipulating Processes�

Máté Kovács and Helmut Seidl

Technische Universität München, Germany

Abstract. We consider the problem of enforcing information flow poli-
cies in Xml manipulating programs such as Web services and business
processes implemented in current workflow languages. We propose a run-
time monitor that can enforce the secrecy of freely chosen subtrees of the
data throughout the execution. The key idea is to apply a generalized
constant propagation for computing the public effect of branching con-
structs whose conditions may depend on the secret. This allows for a
better precision than runtime monitors which rely on tainting of vari-
ables or nodes alone. We demonstrate our approach for a minimalistic
tree manipulating programming language and prove its correctness w.r.t.
the concrete semantics of programs.

Keywords: Semi-structured data, information flow control, runtime
enforcement.

1 Introduction

As the application of computer based workflow and information storage solutions
becomes ubiquitous in today’s practice, the successful operation of organizations
depends heavily on the correct functionality of these systems. In particular,
invaluable pieces of information are stored and manipulated by computer systems
that are in the same time connected to the Internet, so it is our valid expectation
that the security of our data should be guaranteed. Yet, there are numerous
problems and challenges that need to be tackled before we can achieve this goal.

This paper is concerned with the problem of enforcing information flow secu-
rity in contemporary business workflows implemented e.g. using the Web Ser-
vices Business Process Execution Language (BPEL) [5]. One common property
of these workflows is that the data they manipulate is inherently semi-structured.
The common data representation and exchange format is Xml document trees,
especially if Web services are used for communication. In our opinion, the chal-
lenge in this environment is to provide sufficient flexibility to enable the specifica-
tion of secrecy in terms of parts of document trees, besides enforcing information
flow policies.
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There are established solutions for providing information flow control in struc-
tured and object-oriented languages like the Java extension Jif [4, 23], and Val-
Soft/Joana [15]. Further results in this area include among others [8, 10, 13, 30].
These approaches define information flow policies in terms of variables. However,
if a complex data structure consisting of pieces with different security levels is
encoded into the value of a single variable, policies associating security levels
with variables might be too restrictive, because they would be forced to consider
the secrecy level of the complete data structure to be equivalent with that of the
most confidential member of the complete structure. The solution we propose
associates secrecy levels to specific positions in the tree structured data during
runtime.

The authors of [28] note that runtime approaches [13, 26, 30] are on the rise
again, because they can be more permissive than static solutions, while provid-
ing the same guarantees. In our case this statement especially holds, because
our monitor takes advantage of the fact that during runtime data instances are
available. In principle, our monitor executes programs in parallel to the opera-
tional semantics of the language, while maintaining a state which only depends
on the public data. Accordingly, we call the state of the monitor the public or
low view. The computation of the low view is challenging in the case, when the
result of a branching construct, whose condition depends on the secret, is about
to be computed. In this case we apply a dataflow analysis procedure, which is
a refinement of constant propagation (see e.g. [29]) for handling semi-structured
data. The key difference is the hierarchic nature of lattice elements, which aligns
to our purpose of preventing information leakage in tree-manipulating programs.
Moreover, we gain precision by only considering a modification of a subtree in-
side a secret-dependent branch as potentially secret, if it does not occur in the
other alternative as well, and thus must be excluded from the public view. In
summary, our paper provides the following innovations:

– A runtime monitor is introduced to support the specification of information
flow policies in terms of tree-like data and their enforcement.

– The enforcement mechanism applies a generalized variant of constant propa-
gation in order to compute the public view of the state at the end of branch-
ing instructions.

The paper is organized as follows. In Section 2 we introduce a minimalistic
language for which the construction of the monitor is demonstrated. In Section 3
we illustrate the intuition behind our solution through an example, a fragment of
a hypothetical paper submission system. We formalize the approach in Section 4,
and in Section 5 we discuss the guarantees the monitor provides us. In Section 6
we relate our work to others and conclude.

2 Preliminaries

In order to minimize the formal overhead, we demonstrate our approach with a
small programming language for manipulating trees. Here, we consider binary
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trees only. This is no restriction in generality, since binary trees are in one-to-one
correspondence with unranked trees. Unranked trees in turn can be considered
as the natural internal representation of Xml documents.

Definition 1 (Binary trees). The set of binary trees BΣ,{#} over the finite
set of binary alphabet elements Σ and the set of nullary alphabet elements {#}
is defined by the language:

t ::= # | β(t1, t2)
where β ∈ Σ and t1, t2 ∈ BΣ,{#}.

The left hand side of Figure 1 displays an unranked document tree representing
a scientific publication in a database, while the right hand side shows its binary
equivalent in the first-child/next-sibling encoding. The binary tree β(t1, t2) is
interpreted as an unranked forest, where the root of the leftmost tree is labeled
β. Its content is the unranked variant of t1, while the forest on its right hand
side is the unranked variant of t2. The only nullary node labeled # represents
the empty forest.

document

author title content

document

author

title

content

M.Smith The...

M.Smith

The...

#

#

# #

# #

Fig. 1. Encoding unranked trees into binary trees

Our goal is to design a monitor which enforces confidentiality in programs
manipulating tree structured data. In principle, the presented models may be
applied also to interactive processes. In this paper, though, we disregard interac-
tive aspects, like communication primitives. Instead, we focus on the key aspects
of the monitor construction. Therefore, we assume that the input processed by
programs is given in the initial configuration, and the result is presented in the
final configuration.

(tree expressions) e ::= x | # | β(x1,x2) | x/1 | x/2
(boolean expressions) b ::= top(x)=α
(program) p ::= ε | c;p
(commands) c ::= x<-e | if b then p else p | while b do p

Fig. 2. A minimal language optimized for tree manipulation

A grammar for our minimalistic programming language is shown in Figure 2.
A tree expression is the content of a variable x, the nullary node #, or a binary
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tree composed of a new root labeled β having the contents of variables x1 and x2

as subtrees. The expressions x/1 and x/2 refer to the first and second subtree of
the tree stored in variable x. Boolean expressions may test the label of the root
of the tree stored in a variable. A program, generated by the nonterminal p, is a
possibly empty sequence of commands. A command can be an assignment x<-e
of the value of a tree expression e to the variable x, a conditional execution of
alternative programs if, or an iteration while.

The semantics of the language is defined by transition relations cfg →ρ cfg ′

between configurations of the form 〈p, σ〉, where p is the program to be executed
on the state σ. In case of final configurations, where p = ε we simply write σ
instead of 〈ε, σ〉. The state σ : (Var → BΣ,{#}) ∪ {�} is a mapping from the
set of variables of the program to binary trees, or the error state, denoted by �,
symbolizing that a runtime error has occurred during the execution.

The semantics of assignments and boolean expressions is shown in Figure 3.
A boolean expression transforms a state into a boolean value (t or f), while an
assignment transforms the state before the assignment into the state after the
assignment. The new state σ′ is equal to the original σ in all variables except
for the one on the left hand side of the assignment. Such a modification of the
mapping σ at argument x is denoted by σ′ = σ[x �→ v], where v is the new value.
This new value for an assignment is obtained by evaluating the expression on
the right hand side within the state σ.

�top(x)=α�σ =

⎧
⎪⎨

⎪⎩

t α ∈ Σ and σ(x) = α(t1, t2) for some t1 and t2 or

α = # and σ(x) = #

f otherwise

�x<-y�σ = σ[x �→ σ(y)] �x<-#�σ = σ[x �→ #]
�x<-β(x1,x2)�σ = σ[x �→ β(σ(x1), σ(x2))]

�x<-y/1�σ =

{
σ[x �→ t1] if σ(y) = β(t1, t2) for some label β

� otherwise

�x<-y/2�σ =

{
σ[x �→ t2] if σ(y) = β(t1, t2) for some label β

� otherwise

Fig. 3. The semantics of assignments and boolean expressions

When dealing with structured data, runtime errors cannot be excluded. When
processing binary trees, an error occurs, if a subtree of a leaf is about to be
accessed by expressions x/1 or x/2. In this case the new state is the error state
(�). The error state is atomic, it does not map variables to values any more. We
assume on the other hand, that each variable has already received a value in the
initial configuration. Accordingly, no error can be caused by a variable access
during the execution.

The semantics of the programming language is shown in Figure 4. In the
condition parts of the rules we use the relation →∗

ρ, which denotes the reflexive
and transitive closure of →ρ. A central rule of the semantics is S, which is
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responsible for executing a program, in other words a sequence of commands.
The remaining rules define the effects of individual commands. By rule E the
error state is not modified by any command. Instead, it is passed over to the
next command in the sequence, or to the final configuration. In case the state
is not erroneous, the execution of an assignment is specified by the rule A. The
rules WT and WF execute iterations, IT and IF execute conditional selections of
alternative programs as it is usual in other structured programming languages.

E:
σ = �

〈c, σ〉 →ρ �
A:

σ �= �
〈x<-e, σ〉 →ρ �x<-e�σ

S:
〈c, σ〉 →∗

ρ σ′

〈c;p, σ〉 →ρ 〈p, σ′〉

WT:
σ �= � �b�σ = t 〈pt, σ〉 →∗

ρ σ′

〈while b do pt, σ〉 →ρ 〈while b do pt, σ
′〉

WF:
σ �= � �b�σ = f

〈while b do pt, σ〉 →ρ σ

IT:
σ �= � �b�σ = t 〈pt, σ〉 →∗

ρ σ′

〈if b then pt else pf , σ〉 →ρ σ′ IF:
σ �= � �b�σ = f 〈pf , σ〉 →∗

ρ σ′

〈if b then pt else pf , σ〉 →ρ σ′

Fig. 4. The semantics of the programming language

3 The Runtime Monitor

Since the seminal paper of Denning [11], the secrecy level of data is usually
captured in terms of lattices. The simplest form of this lattice is L � H , which
allows to specify that pieces of information belonging to the lattice element L
should not depend on those belonging to H .

Similarly to other runtime monitors e.g. [13, 26, 28, 30], in order to enforce
information flow properties, we extend the configuration of the semantics of the
language with an additional member, which maintains the secrecy information of
the data stored in the state. This new memberD : (Var → BΣ,{#,�})∪{⊥,
,�},
referred to as monitor state, assigns to every variable either a binary tree having
the extra nullary alphabet element �, or is one of the symbols ⊥, 
 and �.
Intuitively, D(x) stores the public upper part i.e., an upper part of the current
value of x, which belongs to the security lattice element L, where the symbol
� indicates subtrees possibly depending on the secret, and thus belonging to
H . For this reason, we also call D the public view, because it only contains
definitely public information. The monitor recalculates this value in parallel
to the semantics for each configuration, and the result of the computation for
principals belonging to the security lattice element L is presented by the final
public view.
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In the next paragraphs, we informally illustrate the functionality of the run-
time monitor by an example. The code fragment in Listing 1 could be part of
a paper submission system distributing the papers to reviewers. Let us suppose
that reviewer 2 declared a conflict of interest with the author A. Mustermann,
and therefore the distribution system is not allowed to send information to him
about the content. Therefore, from the point of view of reviewer 2, the informa-
tion on the topic of the paper of A. Mustermann is secret too. Let us suppose
that the runtime monitor reaches line 3 of Listing 1 with monitor state:

D0 = {..., topic �→ �, rev1 �→ #, rev2 �→ listElem(document(...), #), ...}

1 empty<-#;

2 if top(author)=A_Mustermann then

3 if top(topic)=Databases then

4 rev2<-conflict(empty,rev2); rev1<-listElem(doc,rev1);

5 else rev2<-conflict(empty,rev2); rev3<-listElem(doc,rev1);

6 ; else ;

Listing 1. Branching on a secret value

Because the conditional expression depends on the secret, constant propaga-
tion is carried out on this branching command. We can identify the value �

with the top element of constant propagation expressing that the value is not
constant and therefore, may leak information about the secret. After executing
the branches we get:

Dthen = {..., rev1 �→ listElem(document(...), #),
rev2 �→ conflict(#, listElem(document(...), #)), ...}

Delse = {..., rev1 �→ #, rev2 �→ conflict(#, listElem(document(...), #)), ...}

After the join computation we have:

D = {..., rev1 �→ �, rev2 �→ conflict(#, listElem(document(...), #)), ...}

Computing the join of two states can be done by replacing the values of vari-
ables where the two states differ, with the symbol �. In this way, it is guaranteed
that the monitor state after the branching construct is independent of the secret.

For the join computation, however, it is not necessary to replace the entire
value of a variable with � if the two values differ only for certain subtrees.
Figure 5 illustrates the join computation for the values of variable authors in
monitor states Dthen and Delse in such a situation. The variable contains a list
of authors and their documents that they submitted. Let us suppose that the
order of two authors has been accidentally exchanged in one of the two secret-
dependent conditional branches. By computing the join, we only need to replace
those members of the list which were exchanged, but we can leave the others as
they are. In this way, we take the semi-structured nature of data into account
and gain additional precision.
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Fig. 5. The join on document trees, where the leaves labeled # are omitted for the sake
of simplicity

Another advantage of our approach is the following. Because in the code frag-
ment of Listing 1 variable rev2 is assigned in a secret branch, many information
flow analyzers would consider its value secret. The solutions similar to the type
system of Volpano et al. [31] like Jif [4, 23], SIF [10] and Paralocks [8] do so be-
cause the variable rev2 has been assigned in an environment, where the program
counter depends on the secret and therefore is high. Similarly behave runtime
monitors [13, 26, 28, 30] for the same reason. The program slicing [17] based so-
lutions like Joana [15] do so, because of the control dependency edges from the
conditional expressions to assignments. Our idea is based on the observation
that in the final configuration the value of the variable rev2 is independent of
the value of topic. This could happen, perhaps, because the program noticed
by the embedding branching decision, that the content of the paper is secret and
behaved correctly. Accordingly, the observation of rev2 does not give us informa-
tion on the secret value. Our runtime monitor would consider the value of rev2
as public, because it determines the confidential parts of values by means of the
join computation after exiting from branching commands depending on secret
values. There are approaches based on bisimulation, e.g. [18,21], allowing public
assignments in secret branches, if the equivalence of the public effects of these
branches is proved. Because program equivalence is in general undecidable, these
solutions rely on syntactic approximations. In our solution if programs P and Q
are equivalent, they do not read confidential variables, and they terminate, then
the result of if secret then P else Q; is recognized public regardless of the
syntactic representation of P and Q.

In the next section we formally elaborate the ideas introduced here.

4 Formal Treatment of the Monitor

In order to describe the runtime monitor formally, we need some more definitions.
In the following, we view a tree t as a mapping from its positions Pos(t) to
the alphabet Σ of binary symbols or # and �, where the domain is a prefix
closed subset of {1, 2}∗ with the additional property that if pi2 ∈ Pos(t) then
pi1 ∈ Pos(t) too. Accordingly, we use the notation t(p) to refer to the alphabet
element at position p of the tree t. If a node p of t has no successors, then t(p)
either equals # or �. We denote the subtrees rooted at the first and the second
child of the root of t with t/1 and t/2 respectively.
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Definition 2 (Preorder of trees). If t1, t2 ∈ BΣ,{#,�} then t1 � t2 holds if
one of the following is true:

– t2(ε) = �.
– t2(ε) �= � and t1(ε) = t2(ε), furthermore, if t1(ε) �= # then t1/1 � t2/1 and

t1/2 � t2/2.

In Definition 2 the symbol � occurs as an additional nullary element, which
represents a secret subtree in the public view. Similarly to the state, the monitor
state can also be erroneous, denoted by �, meaning that the execution reached
an inconsistent situation. It is also possible that the error state itself depends
on the secret. This happens for instance, if one conditional branch of a decision
depending on the secret exhibits an error, while the other does not. We have
introduced the top element 
 to represent this case. For the monitor state, a
dataflow analysis will be performed to approximate the public view after a secret-
dependent branching construct. For this analysis, a bottom element (denoting
unreachability) comes in handy to obtain a complete lattice (see Definition 3).

Definition 3 (Complete lattice of monitor states). The complete lattice
of monitor states is D = (Var → BΣ,{#,�})∪{�,
,⊥}. For any D1, D2 ∈ D the
relation D1 � D2 holds if one of the following is true:

– D1 = ⊥
– D2 = 

– D1 = � and D2 = �

– If D1, D2 �∈ {�,
,⊥} then for all variables x it holds that D1(x) � D2(x)
according to Definition 2.

The idea of the monitored execution is to execute the state transformations on
the real state and the monitor state in parallel. In order to do so we need to
specify the semantics of expressions on the monitor states. Considering tree ex-
pressions, we obtain the monitor semantics if we exchange σ with D in Figure 3
with the extension that �x/1�D = �x/2�D = 
 if D(x) = �. This is inevitable
for the following reason. In place of � in the monitor state, the real state may
have any binary tree and thus, in particular, may equal to #. Therefore, depend-
ing on the secret, the result of the expression on the real state may be � or not.
Therefore, the monitor state must be switched to 
.

As it is shown in Figure 6, a boolean expression is a transformation on the
monitor state just as tree expressions are. Basically, if the boolean expression is
true on the monitor state then it is the identity function, otherwise the result
is ⊥. The only exception is in the positive case ((1) and (2)) when the content
of the variable x is transformed to the greatest tree not being �, for which the
boolean expression holds.

The semantics of the monitored execution is defined in the form of relations
cfg →γ cfg ′ between configurations of the form 〈p, n, (σ,D)〉 where p is a program
to be executed and σ is the state of the execution. The member D is the public
view of the state σ, which we call the monitor state, σ is called the real state.
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�top(x)=α�D =

⎧
⎪⎪⎨

⎪⎪⎩

D if D(x)(ε) = α
D[x �→ α(�,�)] if D(x) = � and α �= # (1)
D[x �→ #] if D(x) = � and α = # (2)
⊥ otherwise

�¬top(x)=α�D =

{
D if D(x)(ε) �= α or D(x) = �

⊥ otherwise

Fig. 6. Semantics of boolean expressions on the monitor state

The member n is a natural number influencing the precision of the monitor when
computing the public effect of branching constructs. Larger values correspond
to enhanced precision and longer computation time. In the initial configuration
〈p, n, (σ,D)〉 it holds that σ � D and in case σ is not the error state, there are
no nodes labeled � in the contents of its variables. The intuitive meaning of the
relation � between the real state and the monitor state is that they agree on
public values, and this is the property our monitor guarantees along the run.

As long as the monitored semantics does not execute a branching construct
whose boolean expression depends on the secret, the monitored execution suc-
ceeds similarly to the original execution semantics shown in Figure 4. Assign-
ments are executed in parallel on σ and on D according to the semantics in
Figure 3 with the extension that �x/1�D = �x/2�D = 
 if D(x) = �. The
truth values of boolean expressions are determined based on the monitor state.
If �b�D = ⊥, then we consider ¬b to be true. In case �b�D �= ⊥ and �¬b�D �= ⊥
simultaneously, we execute a branching construct, whose condition depends on
the secret. In this case the result of the branching command on the real state is
computed using the original semantics of Figure 4, the resulting monitor state is
computed using a generalized constant propagation algorithm. This is the point,
where the parameter n is used. Assume that the command c is a branching con-
struct whose condition depends on the secret in configuration 〈c;p, n, (σ,D)〉. In
this case we apply the generalized constant propagation on the command c(n),
which we construct based on c by replacing all occurrences of the command
while b do p in the program text of c by while(n) b do p.

The generalized constant propagation algorithm is defined in Figure 7, which
is basically the rule-based formalization of a syntax directed fixed point compu-
tation algorithm on the program text as it is presented in [7]. The lattice is the
set of possible monitor states according to Definition 3.

The rules defining the functionality of assignment (MA), sequential execution
of commands (MS), and the propagation of the states 
, ⊥ and � (MCE) are
very similar to rules A, S and E of the original semantics. The only difference is
at rule MCE, which propagates the states ⊥ and 
 unmodified as well.

The rule MI is responsible for computing the monitor state transformation
belonging to an if command. It evaluates both branches with initial states �b�D
and �¬b�D and then joins the results.

The rules MWT, MWF, MWH and MWX are used to compute the public ef-
fect of iterations. If the parameter n is zero, or the condition is secret-dependent,
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MCE:
D ∈ {	,⊥,�}
〈c,D〉 →μ D

MA:
D �∈ {	,⊥,�}

〈x<-e,D〉 →μ �x<-e�D
MS:

〈c,D〉 →∗
μ D′

〈c;p,D〉 →μ 〈p,D′〉

MI:

〈pt, �b�D〉 →∗
μ D1

〈pf , �¬b�D〉 →∗
μ D2

D �∈ {	,⊥,�} D′ = D1 
D2

〈if b then pt else pf , D〉 →μ D′ MWF:

D �∈ {	,⊥,�}
�b�D = ⊥

〈while(n) b do pt, D〉 →μ D

MWT:
D �∈ {	,⊥,�} �¬b�D = ⊥ n > 0 〈pt, �b�D〉 →∗

μ D′

〈while(n) b do pt, D〉 →μ 〈while(n− 1) b do pt, D
′〉

MWH:

(�¬b�D �= ⊥∧ �b�D �= ⊥) ∨ n ≤ 0
D �∈ {	,⊥,�} 〈pt, �b�D〉 →∗

μ D1 D′ = D1 
D D′ �� D

〈while(n) b do pt, D〉 →μ 〈while(n− 1) b do pt, D
′〉

MWX:

(�b�D �= ⊥ ∧ �b�D �= ⊥) ∨ n ≤ 0
D �∈ {	,⊥,�} 〈pt, �b�D〉 →∗

μ D1 D′ = D1 
D D′ � D
〈while(n) b do pt, D〉 →μ D

Fig. 7. Generalized constant propagation

a fixed point is computed by rules MWH and MWX. If, however, the condition
is independent of the secret, and n is greater then zero, the monitor executes
the body of the loop iteratively by applying rules MWT and MWF. In the same
time this might not terminate. So the purpose of n is to allow the user to spec-
ify how many times the monitor should apply the rule MWT before switching
to the fixed point computation. In particular, setting the parameter n to zero
in the initial configuration of the monitored execution 〈p, n, (σ,D)〉 amounts to
choosing to omit the application of rules MWT and MWF, and use only the
fixed point computation offered by rules MWH and MWX. In the same time
this might result in an unnecessarily inaccurate monitor state.

Because the complete lattice of Definition 3 has the ascending chain condition,
as Theorem 1 states below, the fixed point computation always terminates.

Theorem 1. If there is σ′ so that 〈p, σ〉 →∗
ρ σ′ and σ � D, then there is a D′

so that 〈p, n, (σ,D)〉 →∗
γ (σ′, D′).

Proof. The idea behind the proof is the following: If there is no branching con-
struct executed having condition depending on the secret along the monitored
execution, then the state transitions are carried out simultaneously on the real
state and on the monitor state. In the case of a branching construct having
secret-dependent condition, the public effect is computed by the algorithm in
Figure 7. The only rule, which could be applied an unbounded number of times
is MWH, but because the lattice of Definition 3 has the ascending chain con-
dition, the fixed point computation terminates. For the detailed proof please
refer to [19].
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5 Guarantees

In this section we formally discuss the guarantees provided by the runtime
monitor.

Similarly to other language-based information flow controlling solutions [4,12,
13, 15, 23, 26, 27, 30], our approach enforces a variant of Termination Insensitive
Noninterference [6] tailored for our computational model. Accordingly, we do
not consider covert channels like the timing channel, the heat channel, or the
memory consumption channel, or any other channel that could result from the
properties of a specific implementation or runtime environment.

Definition 4. Program p satisfies Termination Insensitive Noninterference rel-
ative to the initial and final public views D and D′ if and only if for all σ1, σ2 � D
it is true that if

– 〈p, σ1〉 →∗
ρ σ′

1 and

– 〈p, σ2〉 →∗
ρ σ′

2

then σ′
1 � D′ and σ′

2 � D′. In this case we say that D′ is an appropriate final
public view belonging to the program p and the initial public view D.

The monitored execution 〈p, n, (σ,D)〉 →∗
γ (σ′, D′) computes a pair (σ′, D′)

based on (σ,D), where D′ is an appropriate final public view belonging to p
and D. We may consider the public view D as an indistinguishability relation
between any initial states σ∗, for which it holds that σ∗ � D. The meaning of the
resulting monitor state D′ is that by observing it, we do not gain information
on which σ∗ was the initial state. Accordingly, we can communicate parts or
the entire final public view D′ to principals having low security clearance (L),
and we can consider nodes labeled � as a default value that secret pieces of
information have been replaced with. If D′ = 
 then the observers of the public
do not gain more information than the fact that the execution of the program
terminated. Still, principals with high security clearance (H) may observe the
resulting real state σ′, and use the computed values.

The following theorem assures us that our monitor indeed computes an ap-
propriate final public view belonging to the program and the initial public view:

Theorem 2. If there are two initial states σ1 and σ2 so that σ1, σ2 � D, then
if

– 〈p, n, (σ1, D)〉 →∗
γ (σ′

1, D
′
1) and

– 〈p, n, (σ2, D)〉 →∗
γ (σ′

2, D
′
2)

then D′
1 = D′

2 = D′ and σ′
1 � D′ and σ′

2 � D′.

Proof. For the proof please refer to [19].
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6 Related Work and Conclusion

This paper is related to two research areas. One is language based information
flow security as we have discussed in Section 3, the other is formalization and
verification of Web service compositions and business workflows. Much effort
has been invested to find adequate formalisms to describe the functionality of
service orchestrations and choreography, in particular, the BPEL [5] language,
in order to enable formal rigor for development and to allow verification. The
majority of the publications in this topic can be sorted into two groups. One
[1,2,16,24] applies formalisms based on Petri-nets to model workflows, the other
[9, 14, 20, 25, 32] prefers algebraic calculi like the Π-calculus [22] as the basis for
investigations. The authors of [3] and [33] present security related results using
Petri-net based formalisms. A common property of these approaches is that they
mostly focus on the control flow of orchestrations, sometimes with emphasis on
error handling, whereas data values undergo severe abstractions. Data are either
considered as atomic values, or completely disregarded by handling branching
decisions as nondeterminism.

At the same time practical business processes mostly use Xml documents
for data representation, which are naturally semi-structured and unbounded in
size. In the case of these processes, security is especially important, because
of their distributed nature. For this reason we showed for a minimalistic, yet
Turing-complete language, how to provide security guarantees without carrying
out major abstractions on the data.

As a result we have presented an approach to enforce information flow control
in tree manipulating processes. Since practical information flow policies refer
to the structure of data, approaches where security specifications are bound to
variables such as [4,8,10,13,15,23,30] may not suffice. In their paper [26], Russo
et al. aim at a similar goal like us. In their formal model of JavaScript, they
consider one DOM tree representing the data in a Web browser. However, their
formalism is still quite different to ours. Their computational model operates
on a single unranked tree using a pointer on one specific working node, and
supports operations like insertion, modification and removal. Since their monitor
maintains the security levels of the positions of the DOM tree during the run,
it can be considered as a generalization of the idea of binding secrecy levels to
variables towards trees. Our monitor, on the other hand, maintains the concrete
values of public nodes making it possible to take the semantics of branches into
account where the conditional depends on the secret and compute the public
effect by means of a value-based comparison of the resulting states.
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Abstract. We propose a formal account of XACML, an OASIS stan-
dard adhering to the Policy Based Access Control model for the specifica-
tion and enforcement of access control policies. To clarify all ambiguous
and intricate aspects of XACML, we provide it with a more manageable
alternative syntax and with a solid semantic ground. This lays the basis
for developing tools and methodologies which allow software engineers to
easily and precisely regulate access to resources using policies. To demon-
strate feasibility and effectiveness of our approach, we provide a software
tool, supporting the specification and evaluation of policies and access
requests, whose implementation fully relies on our formal development.

Keywords: PBAC, XACML, formal semantics, CASE tools.

1 Introduction

Nowadays, web services are increasingly used by enterprises and organizations
to expose their data to business partners. In this context, resources and services
are spread among different administrative domains, thus controlling accesses to
them has become a crucial issue. Access control mechanisms are currently used to
mitigate the risks of unauthorized access to resources and systems, which could
jeopardise the secrecy of sensitive data and cause loss of competitive advantages.
These mechanisms may take several forms, use different technologies and involve
varying degrees of complexity. Anyway, they are implementations of one of the
several access control models proposed in the literature (see, e.g., [1,2]).

We focus on the Policy Based Access Control (PBAC) model [2], that is by
now the de-facto standard model for enforcing access control policies in service-
oriented architectures. In this model, a resource is governed by a document that
exactly specifies what subject credentials and requirements must be fulfilled in
order to obtain access. A widely used implementation of PBAC is given by the
eXtensible Access Control Markup Language (XACML) [3], an OASIS standard
now at version 2.01. It defines a language for the definition of policies and access
requests, and a workflow to achieve policy enforcement. XACML is currently

� This work has been partially sponsored by the EU project ASCENS (257414).
1 We will refer from now on to [3] as the standard.
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used as a basis for enforcing access control in many large scale projects (see,
e.g., [4,5]) and standards (see, e.g., [6,7]).

However, designing XACML access control policies is a difficult and error-
prone task. The language has an XML syntax which makes writing XACML
policies awkward by using common editors. To make the definition of XACML
policies easier also for those end users that are not accustomed with the complex-
ity of the overall policy language, many companies have equipped their products
with ad-hoc policy editors (e.g. [8,9]). Such editors are certainly suitable to de-
velop simple and repetitive policies, but might turn out to be cumbersome and
ineffective when dealing with complex policies as indeed they tend to hide all
the possibilities available in the policy language. Most of all, XACML comes
without a formal semantics. The standard is written in prose and contains quite
a number of loose points that may give rise to different interpretations and lead
to different implementation choices. Some of these loose points are due to an ex-
tensive use of the keyword “SHOULD”, as per the IETF rfc2119 [10], to indicate
recommended requirements that can be for some reason ignored. This leaves the
difficult task of understanding the full implications of the various choices to the
implementers. Of course, this has to be avoided, since otherwise the portability of
XACML policies across different platforms would be considerably undermined.

In this paper we introduce a formal semantics of XACML 2.02 that clarifies
all ambiguous and intricate aspects of the standard. To hide the complexity in-
troduced by XML, we propose an alternative syntax. This way, we get a tiny
language with solid mathematical foundations that lays the basis for develop-
ing tools and methodologies that can be easily used by software engineers to
precisely define access controls policies on resources. To demonstrate feasibility
and effectiveness of our approach, by relying on the formal semantics, we have
implemented our language using Java. We have thus obtained a software tool
that supports the specification and evaluation of policies and access requests.

Related work. As a result of the widespread use of XACML in (web) service-
oriented systems and international projects, many attempts of formalisation have
been made. A largely followed approach is based on ‘transformational’ seman-
tics, where XACML policies are translated into terms of some formalism. For
example, [11] uses description logic expressions as target formalism, [12] exploits
the process algebra CSP [13], and [14] the model-oriented specification language
VDM++ [15]. The main advantage of this approach is the possibility of analysing
policies by means of off-the-shelf reasoning tools that may be already available
for the considered formalisms. From the semantics point of view, this approach
provides some alternative high-level representations of policies, which in their
turn have their own semantics. This makes it more difficult to understand the
formal meaning of policies with respect to our formal semantics, which directly
associates mathematical objects (i.e. 4-tuples of request sets) to policies. These
concepts are easier and more understandable than terms, like e.g. description

2 At the time of writing, the new version XACML 3.0 is under first review and, hence,
is continuously changing. We suppose that a full adoption of this new version in
production projects will take quite some time.
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logic expressions, resulting from automatic translations, also because such trans-
lations unavoidably produce terms more complex than necessary. Therefore, our
semantics can be conveniently exploited by software engineers to drive XACML
implementations. At the same time, its mathematical foundations enable the
development of reasoning tools (as we briefly discuss in Section 6).

A similar approach is proposed in [16], where the policies are first specified
by means of the description language RW [17], then are analysed through a
model checking technique, and finally are translated in XACML. Advantages
and disadvantages with respect to our approach are as before.

Other formalisation approaches, more similar to ours, defines the semantics
of XACML policies in a more direct way. For example, [18] proposes a semantics
based on (multi-terminal) binary decision diagrams, which permit efficiently car-
rying out the proposed analysis techniques (i.e. property verification and change-
impact analysis), but are not suitable as an implementation guide. Instead, [19]
formalises a subset of XACML, called Core XACML. The semantics is given
through an inductively defined policy evaluation function. Differently from our
approach, each policy is evaluated only w.r.t. a single request and, most of all,
Core XACML ignores some important XACML features, such as rule conditions,
matching functions, some combining algorithms, and the indeterminate value.

There are by now many XACML implementations (see e.g. [20]). In partic-
ular, SUN XACML [21] and HERASAF [22], that are widely used in software
in production, implement a Policy Decision Point (PDP) and a library for the
development of Policy Enforcement Point (PEP)s. Differently from our imple-
mentation, they parse policies in XML format deployed in the policy repository.
Moreover, they evaluate each request by visiting parts of the generated DOM
tree, while we evaluate the requests by executing Java classes implementing
the semantics representations of the policies. XEngine [23] is another notable
implementation. It aims at highly efficient request processing, achieved by con-
verting XACML policies into numerical representations. Instead, our main goal
is the development of an XACML implementation driven by a formal seman-
tics. Another implementation of an access control mechanism is PERMIS [24],
a modular infrastructure specifically devised for Grid systems and integrated
in modern toolkits (like, e.g., [25,26]). However, PERMIS relies on an ad-hoc,
non-standard policy language which is less expressive than XACML [27].

To sum up, differently from related works, our formalisation has a twofold
aim: it serves as a guide for implementers and, at the same time, paves the way
for the development of analysis tools.

Summary of the rest of the paper. In Section 2, we give a glimpse of the XACML
standard by describing the underlying access control model and the main fea-
tures of the policy language. In Section 3, we introduce an alternative syntax
for XACML, which we then use in Section 4 as the basis to define the formal
semantics. We illustrate our approach through an example from an healthcare
project. In Section 5, we describe our Java-based implementation of the formal
semantics. Finally, in Section 6, we touch upon directions for future work.
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2 The XACML Standard

In the access control model underlying XACML, each resource can be paired
with one or more policies, namely XML documents expressing the capabilities
that a requestor needs to have for accessing the resource. Specifically, policies
and policy sets are retrieved from a Policy Administration Point (PAP) by a
PDP, which is on duty to decide whether to give access to resources or not. The
policies and policy sets retrieved by the PDP represent the complete policy for
the specified resources.

A request to access a resource is created by a PEP, which reuses claims within
the service invocation made by an access requester. PEPs can have many different
forms, e.g. they may be part of a remote-access gateway, a Web server, an email
user-agent, etc. Thus, we cannot expect that in an enterprise all PEPs issue
access requests to a PDP directly in a common format. Therefore, the requests
and responses handled by the PDPmust be converted in a canonical form, i.e. the
so-called XACML context. The obvious benefit of this approach is that policies
may be written and analyzed independently of the specific environment in which
they have to be enforced.

The authorization decision is made by the PDP by checking the matching be-
tween values of the request and values from the retrieved policies. The decision
taken by the PDP can be one among permit, deny, not-applicable and indetermi-
nate: the meaning of the first two values is obvious, while the third means that
the PDP does not have any policy that applies to the request and the fourth
means that the PDP is unable to evaluate the access request (reasons for such
inability include, e.g., missing attributes, network errors, evaluation errors).

Let us now consider the languages for expressing policies and requests pro-
vided by the standard. The basic element of the policy language is Policy. A
Policy is composed of a Target, which identifies the set of capabilities that the
requestor must expose, and some Rules. Every Rule contains the facts for the
access control decision and has an Effect, which can be either Permit or Deny. A
Policy also specifies a combining algorithm that defines what is the final decision
for a request when there are (permit/deny) conflicts in the rule decisions.

A Target is composed of four sub-elements: Subjects, Actions, Resources, and
Environments. Each category is composed of a set of target elements, each of
which contains an attribute identifier, a value and a matching function. Such
information is used to check whether the policy is applicable to a given request.
Specifically, the matching function retrieves a value from the designed attribute
in the request and matches it with the values specified in the target element, ac-
cording to the function’s semantics. If, for all four categories, at least a matching
of a target element succeeds, then the policy is applicable to the request.

Besides the Effect, a Rule may specify a Target and some Conditions, i.e. a set
of standardly-defined functions that operate on values coming from the request.
The Effect is propagated to the upper level policy if the Target of the rule matches
and if the Conditions are satisfied.

Policies can be combined together into a PolicySet, which specifies an algo-
rithm that defines the policy set decision in case the contained policies cause
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permit/deny conflicts. A PolicySet also contains a Target, which is checked for
matching with the access request before the targets of the included policies are.

A Policy/PolicySet can also contain a set of Obligations indicating the actions
that the PEP shall enforce after receiving the response. However, since such
actions do not play any role in the evaluation procedure, Obligations are not
considered in this paper.

An XACML Request, instead, is the request in a canonical form (created by
the PEP or the context handler) made of attribute/value pairs. The elements
specifying such pairs are grouped according to the same four categories used for
the policies, i.e. Subject, Action, Environment and Resource.

3 An Alternative Syntax of XACML

The XACML standard, as explained in the previous section, defines an XML-
based language that permits both writing policies [3, Section 5] and representing
contexts (i.e. access requests and responses) [3, Section 6] in a way independent
of the specific formats used by PEPs. However, the XML syntax of this language,
on the one hand, can make the task of writing policies difficult and error-prone,
and, on the other hand, is not adequate for formally defining the semantics
of the language and reasoning on it. Therefore, in this section, we provide an
alternative syntax of the XACML policy language through a BNF-like grammar
(a similar grammar for context representation can be found in [28]).

Our alternative syntax of the XACML policy language is reported in Table 1.
As usual, square brackets are used to indicate optional items (that is, everything
that is set within the square brackets may be present just once, or not at all).

The manipulable values, ranged over by value, can have simple types (e.g.
boolean, string, integer) or complex types (i.e. the values are XML elements
that may contain other elements and/or attributes). For the sake of simplicity,
we present an untyped version of the language, because the treatment of types
would be standard and, anyway, their addition is not relevant for our studies.

To base an authorization decision on some characteristics of the request, like
e.g. the subject’s identity or the resource’s identifier, XACML provides facilities
to identify specific values (called attribute values) contained in the request con-
text. This approach is supported by means of attribute designators and attribute
selectors. The former ones are pointers to specific attributes of targets (e.g. sub-
jects or resources) in the request context, while the latter ones provide a more
general retrieval mechanism based on XPath [29] expressions over the request
context. For the sake of presentation, in our XACML’s syntax, we represent both
designators and selectors by means of (structured) names, ranged over by name.
For example, the following designator (drawn from [28])

<SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:2.0:subject:role"
DataType="http://www.w3.org/2001/XMLSchema#string" />

is represented by the name subject.role.
To permit specifying conditions, the language is also equipped with expres-

sions, ranged over by expression, which are defined by functions that operate
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Table 1. XACML policies syntax

PDPpolicies ::= {Palg ;Policies} (Retrieved policies)

Palg ::= only-one-applicable | Ralg (Policy-combining alg.)

Ralg ::= deny-overrides | permit-overrides (Rule-combining alg.)
| first-applicable
| ordered-deny-overrides
| ordered-permit-overrides

Policies ::= (Policies)
{Palg ; target :{ [Targets ] } ;Policies} (policy set)

| 〈Ralg ; target :{ [Targets ] } ; rules :{Rules}〉 (policy)
| Policies Policies

Targets ::= MatchId(value,name) (Targets)
| Targets∨ Targets
| Targets∧ Targets | Targets� Targets

MatchId ::= string-equal | integer-equal (Match functions)
| string-regexp-match
| integer-greater-than | . . .

Rules ::= (Effect [ ; target :{Targets} ] (Rules)
[ ; condition :{expression} ] )

| Rules Rules

Effect ::= permit | deny (Effects)

on values and names. The complete list of functions provided by XACML is
reported in [3, Appendix A.3], while the examples shown in the rest of the paper
will exploit the syntax of expressions (reported in [28]) implemented by the tool
described in Section 5.

For efficiency of evaluation and ease of management, the overall security policy
in force across an enterprise is expressed as multiple independent components.
Then, the top-level term {Palg ;Policies} of the XACML policy syntax is a
simplified form of policy set (i.e. without target). Given a request, the PDP
evaluates the policies in Policies (possibly retrieved from a repository or a PAP)
as if they are organised as a single policy set, according to a specified policy-
combining algorithm Palg. The algorithms provided by XACML for combining
the values resulting from policies evaluation – which can be permit, deny, not-
applicable and indeterminate – are the following (we refer to [28] for a more precise
account):

– deny-overrides: if any policy in the considered set evaluates to deny, then the
result of the policy combination is deny;

– permit-overrides: it is similar to the previous algorithm, but this time permit
takes precedence over the other results;

– first-applicable: the combined result is that resulting from the evaluation the
first policy whose target is applicable to the request;
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– ordered-deny-overrides/ordered-permit-overrides: like deny-overrides/permit-
overrides, but policies are evaluated in the same order as they occur;

– only-one-applicable: it only applies to policies/policy sets and ensures that
one and only one policy is applicable by virtue of its target.

The policies that can be evaluated by the PDP, and hence aggregated by a
policy set, can be simple policies of the form 〈Ralg ; target :{ [Targets ] } ; rules :
{Rules}〉 or, recursively, policy sets of the form {Palg ; target :{ [Targets ] } ;
Policies}. Both polices and policy sets specify the algorithm for combining the
results of the evaluation of the contained elements and a target to which the
policy/policy set applies. The algorithms for simple policies are the same as
those for policy sets (but for only-one-applicable) and behave similarly.

A target permits identifying the set of access requests that a rule, a pol-
icy or a policy set is intended to evaluate. Specifically, a target specifies the
set of subjects, resources, actions and environments to which the corresponding
rule/policy/policy set applies. In the original XML-based syntax of XACML,
the target element may contain four elements, one for each of the above cate-
gories. However, the evaluation of these separate blocks of information shall be
performed in the same way. In fact, in the XACML specification document, the
evaluations of subjects, resources, actions and environments are defined by the
same ‘match table’ [3, Section 7.6] and, also, the set of designators for each cat-
egory is not fixed in advance. Therefore, to obtain a more compact notation, we
have decided to represent a target as an expression built from match elements,
i.e. terms of the form MatchId(value,name), by exploiting an operator for logical
disjunction, ∨, and two operators for logical conjunction, ∧ and �. Each match
element spells out a specific value that the subject/resource/action/environment
in the decision request (identified by a name) must match, according to a given
matching function. Anyway, this target representation does not lead to a loss of
information, because names can be structured and hence, as shown before in the
designator example, can include the corresponding category. In a match element,
MatchId specifies the (boolean) matching function to be used to compare the
given literal value with the value of the attribute identified by the given name.
XACML supports a wide range of (standard) matching functions (we refer to
[3, Appendix A.3] for a complete account and to [28] for the list of functions
supported by the tool described in Section 5). Notably, if the target of a policy
(resp. policy set) is empty, the policy (resp. policy set) applies to any request
context. Instead, if the target of a rule is absent, the rule inherits the target of
its enclosing policy.

The three logical operators used for expressing targets are defined over the
set {match, no-match, indeterminate}. Basically, they behave as standard con-
junction and disjunction operators over {match, no-match} (where match and
no-match are dealt with as true and false, respectively) and the behaviours of
the two conjunction operators ∧ and � only differ for the treatment of the value
indeterminate. The decreasing order of precedence among them is as follows: ∧,
∨ and �. A disciplined use of structured names and these logical operators per-
mits properly expressing XACML targets: a target must be a term of the form
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Subjects � Resources � Actions � Environments, where each subterm,
say Subjects, must have the form Subject1 ∨ Subject2 ∨ . . . ∨ Subjectn
and, finally, each Subjecti must have the form MatchId1(value1,name1) ∧ . . .∧
MatchIdm(valuem,namem). We believe our approach has many advantages like,
e.g., a more compact syntax and a more intuitive and clearer semantics.

A single policy contains a (non-empty) set of rules of the form (Effect
[ ; target :{Targets } ][ ; condition :{expression} ] ), each specifying: 1. an effect,
which indicates the rule-writer’s intended consequence of a positive evaluation
for the rule (the allowed values are permit and deny), 2. a rule target, which re-
fines the applicability established by the target of the enclosing policy, and 3. a
condition, which is a boolean expression that may further refine the applicability
of the rule. Notably, in a rule, target and condition may be absent.

Regarding context requests, they are represented as terms of the form
request :{Attributes }, where Attributes consists of a set of (name,value) pairs.
Such information indicate the subjects associated to the request, the resources
for which the access is being requested, the action to be performed on the re-
sources and the environmental properties. Again, to avoid dealing with separate
blocks of information, we exploit structured names. As a matter of notation, we
will use Rall to denote the set of all possible requests.

We conclude by showing the syntax of a policy3, which expresses the patient
privacy consent [30] for the EU Project epSOS [4]. In this project, each role (e.g.
doctor, nurse, pharmacist) has permissions for performing a certain coded ac-
tion [31] for a certain purpose (e.g. healthcare treatment, statistics, emergency).

〈permit-overrides ;
target :{ string-equal(“medical doctor”, subject.role)

∧ string-equal(“TREATMENT”, subject.purposeofuse)
� string-equal(“34133-9”, resource.resource-id) } ;

rules :{(permit ; target :{ string-equal(“Read”, action.action-id) } ;
condition :{ string-subset(

string-bag(“PRD-003”,“PRD-005”,“PRD-010”,“PRD-016”),
subject.permission) })

(deny) } 〉

The policy specifies a subject and a resource in its target, according to which the
policy applies to requests issued by a medical doctor with the purpose of accessing
to a resource with a code identifier 34133-94 for an healthcare TREATMENT. If
these capabilities are met, the rules enclosed in the policy are evaluated. The
first rule has effect permit if the requestor aims at performing a Read action
and has at least the permissions PRD-003, PRD-005, PRD-010 and PRD-0165 for
accessing the resource. The second rule has always effect Deny and is combined

3 Due to lack of space, the corresponding XML description is relegated to [28].
4 In the international code system LOINC [32], 34133-9 identifies a patient summary.
5 These permissions are values from the Hl7 RBAC catalogue [31] grouped together
by using a bag, i.e. an unordered collection that may contain duplicate values.
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with the previous one in such a way that if the first rule evaluates to Permit then
the policy permits the access to the resource, otherwise the access is denied.

4 XACML Formal Semantics

We present in this section a semantics of XACML policies that formalises the
informal one provided by the the standard.

Our semantics is given in a denotational style, i.e. it is defined by a function
[[·]]R that, given a policy/policy set (or a PDPpolicies term) and a set R of
context requests (with R ⊆ Rall), returns a decision tuple of the form

( permit : Rp ; deny : Rd ; not-applicable : Rn ; indeterminate : Ri )

where Rp∪Rd∪Rn∪Ri = R. Intuitively, R is partitioned into four sets according
to the results of the requests evaluation. Notably, R is a subset of the set Rall

of all requests, thus it can contain e.g. all possible requests, only requests with a
given structure or a single request. The definition of [[·]]R relies on an auxiliary
function (| · |)R that, given a target, returns a matching tuple of the form

(match : Rm ; no-match : Rn ; indeterminate : Ri )

where Rm ∪ Rn ∪ Ri = R, i.e. R is partitioned according to the results of the
target evaluation. We will use a projection operator · ↓v that, given a tuple,
returns the set corresponding to the value v. Moreover, we will use r to denote
a context request and, when convenient, we shall regard r as a set, writing
e.g. (name,value) ∈ r to mean that (name,value) is an attribute of the request
r. As shown in [28], this representation of requests easily permits dealing with
multivalued attributes and with the fact that attribute designators and selectors
may select bags of values from a request context.

The semantics of a match elementMatchId(value,name) of a target is a match-
ing tuple determined by comparing value with the values within the request
attributes by means of the matching function MatchId .

(|MatchId (value,name)|)R =
(match : {r ∈ R | ∃ (name,value′) ∈ r : MatchId(value,value′) = true};
no-match : {r ∈ R | ∀ (name,value′) ∈ r :

MatchId(value,value′) = false};
indeterminate : {r ∈ R | ∃ (name,value′) ∈ r :

MatchId(value,value′) = indeterminate
∧ ∃ (name,value′) ∈ r :

MatchId(value,value′) = true} )
Notably, the use of the universal quantification in the definition of the no-match
set implies that requests that do not contain attributes named name are inserted
into the no-match set6. The definitions of the matching functions supported by

6 We assume that the MustBePresent parameter of every selector/designator has al-
ways the default value false, which prescribes to return an empty bag when the
specified attribute is absent from the request.
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XACML are reported in [3, Appendix A.3]. For example, the function string-equal
returns true if and only if both argument values are strings of equal length and are
equal byte-by-byte according to the function integer-equal (defined by the IEEE
standard [33]); otherwise the function string-equal returns false. The matching
tuples returned by the evaluation of the match elements within a given target
are then combined according to the semantics of the operators ∨, ∧ and �, as
e.g. in

(|Targets1 ∨ Targets2|)R =
(match : (|Targets1|)R ↓match ∪ (|Targets2|)R ↓match;

no-match : (|Targets1|)R ↓no-match ∩ (|Targets2|)R ↓no-match;

indeterminate : ((|Targets1|)R ↓indeterminate \ (|Targets2|)R ↓match)
∪ ((|Targets2|)R ↓indeterminate \ (|Targets1|)R ↓match) )

The semantics of a rule with effect permit is defined as follows:

[[ (permit ; target :{Targets }; condition :{expression}) ]]R =

( permit : {r ∈ (|Targets|)R ↓match | expression · r = true} ;
deny : ∅ ;
not-applicable : {r ∈ (|Targets|)R ↓match | expression · r = false}

∪ (|Targets|)R ↓no-match ;
indeterminate : {r ∈ (|Targets|)R ↓match | expression · r = indeterminate}

∪ (|Targets|)R ↓indeterminate )

where expression · r denotes the evaluation of the expression expression w.r.t. the
request r according to the function definitions reported in [3, Appendix A.3].
The semantics of a rule with effect deny is similar, except that in the decision
tuple the permit and deny sets are swapped. Notably, in a rule, the target and the
condition are optional; if one or both of them are absent, the semantics of the
rule is determined by the above definitions where expression · r is true for any r if
the expression is omitted, and (|Targets|)R ↓match= R, (|Targets|)R ↓no-match= ∅
and (|Targets|)R ↓indeterminate= ∅, if the target is omitted.

The semantics of a policy is defined as follows:

[[ 〈Ralg ; target :{Targets } ; rules :{Rules}〉 ]]R =

( permit : Ralg(Rules)Rm ↓permit ;
deny : Ralg(Rules)Rm ↓deny ;
not-applicable : Ralg(Rules)Rm ↓not-applicable ∪ (|Targets|)R ↓no-match ;
indeterminate : Ralg(Rules)Rm ↓indeterminate ∪ (|Targets|)R ↓indeterminate )

where Rm stands for (|Targets|)R ↓match. Basically, the requests for which the
policy’s target does not match are evaluated as not-applicable, while those for
which the policy’s target is indeterminate are evaluated as indeterminate. The re-
maining requests, i.e. those for which the policy’s target matches, are partitioned
by applying the algorithm Ralg specified by the policy to the policy’s rules. Sim-
ilarly to the evaluation of rules, if the policy’s target is empty then the policy is
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evaluated as above by letting (|Targets|)R ↓match= R, (|Targets|)R ↓no-match= ∅
and (|Targets|)R ↓indeterminate= ∅. Functions Ralg(Rules)R, given a set Rules of
rules and a set R of requests, return decision tuples of the form

( permit : {r ∈ R | Ralg(Rules, r) = permit} ;
deny : {r ∈ R | Ralg(Rules, r) = deny} ;
not-applicable : {r ∈ R | Ralg(Rules, r) = not-applicable} ;
indeterminate : {r ∈ R | Ralg(Rules, r) = indeterminate} )

Basically, such tuples are calculated by relying on the auxiliary functions
Ralg(Rules, r) whose definitions are given in [3, Appendix C].

The semantics definition of a policy set is similar to that of a single policy:

[[ {Palg ; target :{Targets } ;Policies} ]]R =

( permit : Palg(Policies)Rm ↓permit ;
deny : Palg(Policies)Rm ↓deny ;
not-applicable : Palg(Policies)Rm ↓not-applicable ∪ (|Targets|)R ↓no-match ;
indeterminate : Palg(Policies)Rm ↓indeterminate ∪ (|Targets|)R ↓indeterminate )

where Rm stands for (|Targets|)R ↓match, and function Palg(Policies)R returns
a decision tuple calculated by applying the algorithm Palg to the enclosed poli-
cies. It is worth noticing that the definitions of the policy combining algorithms
slightly differ from the corresponding rule combining algorithms.

Finally, given a set R of access requests, the semantics of a top-level term
{Palg ;Policies} is determined by applying the definition for policy sets and by
letting Rm = R, (|Targets|)R ↓no-match= ∅, and (|Targets|)R ↓indeterminate= ∅.

We conclude the section by showing how the semantics definitions presented so
far apply to the policy example from the epSOS project, introduced in Sections 3.
Given a set R of requests, the permit set of the decision tuple returned by the
application of function [[·]]R to this policy is as follows:

{r ∈ R | (subject.role,“medical doctor”) ∈ r
∧ (subject.purposeofuse,“TREATMENT”) ∈ r
∧ (resource.resource-id,“34133-9”) ∈ r
∧ (action.action-id,“Read”) ∈ r
∧ (string-subset(string-bag(“PRD-003”,“PRD-005”,“PRD-010”,“PRD-016”),

subject.permission) ) · r = true }

As expected, these are all those requests in R that are issued by a medical
doctor, with appropriate permissions, for read accessing a patient summary for
treatment purpose. The deny set of the decision tuple consists of all requests in
R that match with the policy’s target but are not in the set above, i.e. they do
not satisfy the target and condition of the first rule. The remaining requests in R
belong to the not-applicable set, since the policy never evaluate to indeterminate.
We refer the interested reader to [28] for a step-by-step computation of the above
decision tuple and further examples.
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5 Tools

The implementation of the formalisation presented in the previous sections is
made in Java, by also using the ANTLR tool [34] for parsing generation. Our
tool “compiles” a policy written in the syntax proposed in Section 3 into a Java
class following the semantics rules defined in Section 4. Thus, a repository storing
some policies consists of a Java archive containing all the Java classes generated
from the policies. A policy decision is then computed by executing the generated
code with the requests passed as parameters to an entry method.

For long-lasting repositories where policy changes are infrequent, this ap-
proach is convenient, since no policy’s XML Document trees need to be loaded
in memory and parsed for each request. Instead this approach does not fit well
in situations where the policy repository changes on-the-fly.

Specifically, we have defined two separate parsers: one for the proposed
XACML syntax and another one for the rule condition expressions. Each parser
is defined so that, every time a syntactic category is identified within a policy
term, the corresponding Java method is included into the class under genera-
tion. The generated class exploits three lists for representing the matching tuples
computed during the evaluation of targets. Indeed, when a target is found, the
corresponding matching function is retrieved from a specific data structure, i.e. a
‘function table’ containing the code implementing all functions defined by the
standard. The operators ∧, ∨, and � are used to maintain the lists of requests.

Rules are created according to the corresponding rule combining algorithm:
if targets and conditions are satisfied, the algorithm is applied and the deci-
sion tuples are returned to the caller. Here, to deal with conditions, a factory
method is used to load the current implementation of the expression evaluator.
The strategy used in this version of the tool follows the same paradigm as the
XACML syntax implementation: when a new condition is satisfied, a Java file
is created on-the-fly and compiled. Policies and policy sets are implemented in
a way similar to the implementation of rules, relying on the policy-combining
algorithms. When targets, rules, and policies are evaluated, the resulting lists
representing the decision tuples will be returned to the caller.

A web interface to the tool is available online at
http://rap.dsi.unifi.it/xacml_tools. It permits to practice with the
implementation by using sample policies. The web interface gives the possibility
to create XACML requests and, then, to obtain the decision computed by the
engine.

6 Concluding Remarks

We defined a formal semantics of XACML that aims at clarifying all ambigu-
ous and intricate aspects of the XACML standard and, hence, at conveniently
driving implementations. To demonstrate the feasibility and effectiveness of our
approach, we fully implemented the semantics as a Java tool.

Another significant advantage of our formalisation is that it paves the way for
the development of reasoning tools supporting the analysis of XACML policies.

http://rap.dsi.unifi.it/xacml_tools
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For example, equivalences and preorders among (syntactically) different policies
could be defined based on their semantics denotations and then used to more
compactly store the policies or to more efficiently compute a decision. Thus,
two policies could be considered as equivalent if their associated decision tuples
coincide or, simply, have the same permit set (indeed, sometimes it does not
matter the reason why the access is not permitted, as e.g. with a deny-biased
PEP [3, Section 7.1.2] that allows the access if the decision taken by the PDP
is permit and denies the access in all other cases). We leave the investigation of
policy relations as a future work.

We also intend to develop techniques, based on our formal semantics, for
studying the application of the least-privilege concept [35], in order to deter-
mine the requests using the least amount of privilege necessary to satisfy a given
XACML policy. To this aim, we will consider an approach where weights (indi-
cating the access privilege level7) are associated to request data and are used
to identify, within the permit set of the decision tuple associated to the consid-
ered policy, the requests with minimum total weight. We will also exploit our
semantics as a basis for studying separation of duty aspects of XACML policies.

We also plan to extend our Java-based framework with other tools, e.g. for
translating XACML policies written in the original XML format into polices
written in our syntax, and vice versa, and for generating XACML requests, as
variations of a template, to be input by the evaluation tool already available.
We intend to determine the performances of our tool and to compare them with
those of the most notable XACML implementations.
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Abstract. Trust has become essential in computer science as a way of
assisting the process of decision-making, such as access control. In any
system, several tasks may be performed, and each of these tasks might
pose different associated trust values between the entities of the system.
For instance, in a file system, reading and overwriting a file are two
tasks that pose different trust values between the users who can carry
out them. In this paper, we propose a model for automatically establish-
ing trust relationships between entities considering an established order
among tasks.

1 Introduction

Trust has become an issue of paramount importance when considering systems
security. Despite of its importance, a clear, standard definition of trust has not
been provided yet. However, it is wide accepted that trust might assist decision-
making processes, such as those involved in authorization schemes.

If establishing a definition of trust is very important, how to measure it is also
a matter of research and can vary depending on the context where it is applied
and the problem that the trust model is meant to solve. What it is mostly
common among all the definitions of trust is that it involves a trustor (entity
that trusts) and a trustee (the entity on which the trustor places its trust). Thus,
the trustor places some trust on the trustee to perform a given task. A usual
example to understand this can be given by the fact that one might trust his
mechanic for repairing his car but not for fixing his teeth.

This example shows very unrelated tasks but in some cases entities of a sys-
tem perform tasks that sometimes are overlapping or related. In this paper, we
address the issue of how to derive trust values for entities using an established
order between tasks. We consider that the trust relationships among entities in
a system can be expressed as a trust graph where the edges are the trust values
between two of them for a given task. Considering an order on the tasks will
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allow us to determine the trust graph of one task based on the trust graph of
the other task.

Consider, for example, a file system with several users each of them able to
perform two different tasks on it: read a file and write a file. Users of the system
might trust other users to perform these tasks. The organization that owns this
file system estimates that, due to privacy regulations, reading a file poses a high
risk, and decides that reading a file should be more restrictive than writing a
file. Two questions arise: on the one hand, how and under which criteria to
define an order between these tasks? On the other hand, let us assume that the
organization assigns trust values to the users of the systems for the task read
a file. Suppose that user A trusts user B to read a file with trust value 0.3,
while the same user A trusts user C with value 0.6 for the same task, as shown
in Figure 1a. Is it possible to automatically derive trust values for these users
regarding the task write a file (Figure 1b), if we know the relationship between
this task and the task read a file? We intend to address these two questions by
first defining an order on the tasks of a system and then defining a trust model
that can be used for establishing the unkown trust relationships.

The paper is organized as follows. Section 2 gives an overview of similar work
carried out prior to this paper. Then, in Section 3, a graph-based trust evaluation
model is introduced, as it encompasses the foundations required for the rest of
the paper. The order between tasks is explained in Section 4, and in Section 5 our
proposed model is presented. In Section 6, our model is applied to an e-Health
scenario. Finally, Section 7 presents the conclusions, as well as some relevant
lines for future research.

(a) Trust
Graph for
Task Read
a File

(b) Trust
Graph
for Task
Write a
File

Fig. 1. Trust Graphs for a File System with three Users

2 Related Work

To the best of our knowledge, the idea of exploiting an order among tasks to
perform automatic trust evaluations is new. However, enough work has been
previously carried out in related areas. Trust models have become very important
for many computer systems and networks (see [6] for a survey). One of the most
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critical and important issues for these models include how to quantify trust
values between the entities of the systems, i.e, trust metrics. There are many
ways to define trust metrics, ranging from simple, discrete models with trusted
and not trusted values, to complex models using logical formulae like BAN logic
[5], vector like approaches [8], or probabilities ([9] provides a survey) and fuzzy
logic [13]. Flow models such as Advogato’s reputation system [10] or Appleseed
[17,18] use trust transitiveness.

In [3], a formal model is proposed to compute trust metrics between two any
entities in a trust graph, using sequential operators to compute a value for a
given graph path, and parallel operators to compute a final value from several
graph paths. Our paper follows one of its future research proposals and builds
upon some of its definitions (see Section 3).

Other approaches focus on delegation and recommendation purposes, such as
[14] and [7], respectively. The former proposes a formal approach to assess the
trustworthiness of potential delegatees in the context of the task to be delegated,
ensuring that the choice does not cause a security breach. The latter provides an
approach to take subjectivity into account when performing recommendations,
in such a way that the same scalar value might mean different things to two
different users.

The notions of risk and trust, as well as how they relate to each other, have
also been paid attention in the literature. In [16], the authors declare that trust
delegation implies risk assumptions, and propose a semirring-based trust model
that takes into account the evaluation of risk and privacy for trust establishment.
A mechanism that takes both trust and risk into account in order to make access
control decisions is presented in [11]. Likewise, [12] considers risk and trust as
two important, independent factors to strengthen interactions in e-commerce.
Finally, in [4], user trust is defined as an asset. Then, by using asset-oriented
risk analysis, the authors analyze which threats and vulnerabilities may cause a
reduction in user trust.

3 A Graph-Based Trust Metric Model

Trust can be defined as the level of confidence that an entity e1 places on another
entity e2 for perfoming a task in a honest way. As explained in [3], trust for one
task can be modelled using a weighted graph where the vertices are identified
with the entities of the community and the edges correspond to trust relation-
ships between entities regarding the task. This graph actually is a weighted
digraph, since any two entities in the graph do not need to have the same level
of trust in each other. Now, if we consider having n tasks instead of just one,
then we would have n weighted digraphs and as a result, a multigraph.

Next we provide some definitions based on those given in [3].

Definition 1 (Trust Domain). A trust domain is a partially ordered set
(TD,<, 0) where every finite subset of TD has a minimal element in the subset
and 0 represents the minimal element of TD.
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The trust domain represents the set of all possible trust values that any entity
of the system might hold or might place on other entities.

Each entity in the system makes trust statements about the rest of the entities,
regarding the task considered for each case. Those trust statements are defined
as follows,

Definition 2 (Trust Statement). A trust statement is an element (Trustor,
Trustee,Task,V alue) in E × E × T × TD where, E is the set of all entities in
the system; T is a partially ordered set representing the possible tasks, where the
order established on tasks is �; and TD is a Trust Domain.

The set Gx = {(e1, e2, x, t) ∈ E × E × T × TD} allows building the graph for
task x.

Definition 3 (Trust Evaluation). A trust evaluation for a task x ∈ T is a
function Fx : E × E −→ TD

This function provides, for each task x and for each pair of entities e1 and e2, a
value t of the trust domain that e1 places on e2 to perform x.

4 Tasks Dependencies

An order � amongst tasks is mentioned in Definition 2. However, it was not
specified there how to define it. The main contribution of this paper consists of
exploring how this order can be used in order to calculate trust values between
entities. The order between tasks imposes certain conditions on the trust values
of one task regarding another task. For the sake of completeness, a possible
criteria to determine the order between tasks is provided in section 4.2, but any
other possible criteria could be taken into account.

4.1 Motivation

Providing a task order might make easier for a trust manager the assignment of
trust values to the entities which are to perform these tasks. Although a formal
definition is given later, let us for now think of x0 and x as two tasks in T that
we would like to classify w.r.t. an order. Let us assume that x0 is lower w.r.t. this
order. This means that x0 is a reference for x in order to build its trust graph.
Thus, if we consider that we can deduce the gaph of the highest tasks from
the lowest tasks graphs, we could semi-automatize the process of trust values
assignment. Thus, starting from the lowest task/s, we could build the graphs
and trust values for the rest of tasks repeating the process downwards through
the order chain, saving the trust manager the tedious work of sketching one trust
graph for each task.
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4.2 Task Domain

Definition 4 (Task Domain). A Task Domain is a finite partially ordered set
(T,�), where � is defined as follows: let x0, x be two tasks in T . x0 � x if and
only if R(x0) > R(x), where R(x) : T −→ R

+ is a function that given a task,
returns a positive real number.

Lemma 1. For any given task x, either it is minimal or there is a minimal task
x0 such that x0 � x

This can be easily proved if we consider the finite set R(T ) ∈ R
+, which repre-

sents the set of the images of the function R. Note that in R, finite sets have a
minimum element. Since T is a finite set, R(T ) is finite as well.

A risk assessment process, focusing on the scope and context of the task, would
analyze the threats, vulnerabilities, possible losses, and other issues regarding
the impact of the task on the system, and would return a number between 0
(no risk at all) and an established upper bound. Given that any risk assessment
process is a rather subjective concept, we can refine this value as Re(x), which
refers to the risk assessed by entity e for task x.

However, the final order between tasks should consider the opinions of all
entities of the system. Thus, the final risk function (the one used for ordering
the tasks) should involve the local risk functions of each entity. Let us consider
an example of a system with n entities, namely e1, e2, ..., en ∈ E, and x ∈ T .
R(x) could be the average risk assessment, that is,

Re1(x) +Re2(x) + ...+Ren(x)

n

where Rei(x) is the risk assessment performed by entity ei for task x.
Once we have this value for all tasks, we can order the tasks. Let us assume

that we have the order among tasks of Figure 2, where x1, x2, ... , xn are the
tasks in the system, and the graph declares that x1 � x2 ... xn−1 � xn. Now,
we can take advantage of this order to automatically build the trust graph for
xi from the trust graph of xi−1, i > 1.

Fig. 2. Task Order

4.3 Trust Assumptions

Some assumptions about trust have been made in the definition of our model.
They are listed next:
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1. Higher risky tasks should impose lower trust values among the
entities. This assumption can be reformulated as follows: if entity e1 trusts
entity e2 with value t1 to perform task x1 (which is highly risky), entity e1
could trust entity e2 with value t2 ≥ t1 to perform task x2 (which is less
risky). This also happens in real life. We would implicitly trust someone
unknown higher to perform a simple, safe task than a risky, complex one. As
a consequence of this assumption and our order definition, the trust values
for xi should be lower than the trust values for xj if xi � xj .

2. Trust in entity e to perform task x is proportional to the amount
of risk that entity e assigned to x. If an entity considers that a task is
risky, it will more likely take the necessary measures to ensure its successful
execution.

3. People tend to trust similar persons. If we know that someone has a
similar set of values or think in a very similar way as we do, we tend to
trust that person more. In the case of entities, those entities which perform
a similar risk assessment for most of the tasks will probably have similar
worries and similar goals, thus they will be able to trust more each other.

4. Mistrust should be preserved. If entity e1 does not trust entity e2 to
perform a task, there is not reason a priori to assume that it should trust it
to perform another related task.

5 Model for Automatic Trust Values Computation

Up to now, definitions have been provided in order to establish an order on the
tasks of a system. Now, we will use this order to automatically compute trust val-
ues for the entities which execute these tasks, while respecting the assumptions
of Section 4.3. For this purpose, one more definition is required.

Definition 5 (Entities Divergence). Let e1, e2 ∈ E be two entities of the
system. Let x1, x2, ..., xn ∈ T be the tasks of the system. We define the Enti-
ties Divergence (ED) between e1 and e2 as ED(e1, e2) = |Re1(x1) −Re2 (x1)|+
|Re1(x2)−Re2(x2)|+ ...+ |Re1(xn)−Re2(xn)|.
Definition 5 provides a way to measure how close two entities are between them.
This is the way how we incorporate assumption 3 of Section 4.3 into our model.

As we mentioned in Section 4.2, we would like to automatically generate the
trust values of xj from those trust values of xi, being xi � xj . Using the notation
and definitions introduced in Section 3, what we want is to compute, for every
trustor (e1) and for every trustee (e2), Fxj (e1, e2) from Fxi(e1, e2).

We have to consider all the minimal tasks as well. If we think of our model as
a recursive model, in which the trust values for the current task depend on the
trust values of the previous task, the trust graph for the minimal tasks would
represent the base case. A graph for these minimal tasks should be sketched in
order to assign the initial trust values. This assignment is made beforehand, since
entities are unknown between them, and have neither knowledge nor experience
with the other entities to make an informed decision on the initial trust values.
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However, if such information exists, it could be taken it into account during this
assignment.

Note that assumption 1 in Section 4.3 states that the trust values for xj should
be higher than the trust values of xi if xi � xj . We can model it declaring that
Fxj(e1, e2) represents an increment over the value Fxi(e1, e2). Thus, we could
say that the former trust values depend on the latter ones, and at the same time,
monotony property would hold: if xi � xj , Fxi(e1, e2) ≤ Fxj(e1, e2) for any pair
of entities e1, e2.

The question that arises is how this increment should be done, and here is
where assumptions 2 and 3 of Section 4.3 come into play.

Definition 6 (Trust Incremental Value). We define the Trust Incremental
Value as a function TIV : E×E×T −→ R

+ that holds the following properties:

1. For all entities e1 (trustor), e2 (trustee) ∈ E, and for all tasks x ∈ T ,
TIV (e1, e2, x) ≥ 1

2. TIV should be inversely proportional to the divergence between entities, thus
more similar entities will tend to trust each other.

3. TIV should be directly proportional to the assessed risk by the trustee. A
trustee that considers a task to be very risky will be more trusted by the rest
of entities for performing such task.

As it can be noticed from the above definition, the TIV depends on both the
task risk assessed by the trustee, (e2), as stated by assumption 2, and the simi-
larity between the trustor (e1) and the trustee (e2), represented by the ED (see
Definition 5), as declared by assumption 3. It is out of the scope of this paper
to provide a concrete definition for this value, although it would constitute an
interesting future research.

Next definition explains how to compute the actual trust values:

Definition 7 (Order-dependent Trust Evaluation). Let xi, xj ∈ T be two
tasks of the system, in such a way that xi � xj. Let e1, e2, ..., em ∈ E be the
entities of the system. Then, for any pair of entities eu, ev, Fxj(eu, ev) =
TIV (eu, ev, xj)Fxi(eu, ev)

Note that assumption 4 is preserved as well, as in the case of mistrust for task
xi (i.e. Fxi(eu, ev) = 0), mistrust is preserved for task xj (i.e. Fxj (eu, ev) = 0).
Likewise, if xi is a minimal task, the trust values for every pair of entities should
be explicitly provided by the trust manager.

Also note that the purpose of our proposed trust model is to assign initial
trust values. This is an important consideration, since this model does not cope
with malicious entities, which might rate tasks with a high risk in order to gain
higher trust. Thus, once the initial trust values have been calculated, the subse-
quent values are calculated with an appropriate trust model for the application,
considered for each case.
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5.1 Tasks Comparison

Up to now, we have only considered the case where we have a simple order
configuration, as depicted in Figure 2. However, it might happen that two or
more tasks are not comparable. Recall our task order definition (Definition 4). It
implicitly stated that two tasks are comparable only when the total risk assessed
for one of them is higher than the total risk assessed for the other one. Thus,
when the risk assessment for both tasks is the same, they are non-comparable.

Consider the examples depicted in Figure 3. Figure 3a shows the case in which
more than one edge comes out from task xn+1 (that is, n non-comparable tasks
have an unique precedent task), whereas Figure 3b shows the situation in which
several edges arrive in xn+1 (that is, xn+1 has many non-comparable precedent
tasks). The first case does not represent any problem, since every task with an in-
coming arrow computes its trust values from those of xn+1 following Definition 7.
However, the second case is more interesting, since the trust values of xn+1 can

(a) 1- n Order (b) n-1 Order

Fig. 3. Task Dependencies Configurations

be computed from the trust values of tasks x1, x2, ..., xn. Remember that our
model is subjected to some assumptions in Section 4.3, and that assumption 1
stated the monotony property. Thus, if x1 � xn+1, Fx1(e1, e2) ≤ Fxn+1(e1, e2)
for all entities e1, e2. In addition, as x2 � xn+1, then Fx2(e1, e2) ≤ Fxn+1(e1, e2),
and so forth for the other tasks. Thus, if we want to guarantee the preservation
of assumption 1 we should take as the reference task that one of maximum trust
value for entities e1 and e2.

Informally, the process would be as follows: let us assume that our system in
Figure 3b has two entities, namely e1 and e2. We want to compute the trust
value Fxn+1(e1, e2) from the trust values of all precedent tasks x1, x2, ..., xn.
First, we should inspect the trust values Fx1(e1, e2), Fx2(e1, e2), ..., Fxn(e1, e2).
Then, we would choose the maximum of these values. If there are more than
one maximum, we choose one of them in a indeterministic way. Assume that
xi is the task with a maximum Fxi(e1, e2). Then, according to our model,
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Fxn+1(e1, e2) = TIV (e1, e2, xn+1)Fxi(e1, e2). In a system with more than two
entities, we would repeat this process for every pair of entities.

This is further explained in the next section, where a case study is presented.

6 Case Study: Electronic Health Records Management

In this section, we present a case study in order to provide a clearer vision on
the applicability of our model. The case study has been extracted from one of the
NESSoS [1] application scenarios. These scenarios are further described in [2].

6.1 e-Health

Electronic Health, or more commonly e-Health, is defined by the World Health
Organization as the use of information and communication technology for health
[15]. e-Health covers a wide range of technologies and scenarios that include
interaction between patients and health service providers, as well as peer-to-
peer communication and transmission of data between institutions and health
professionals.

Systems that manage Personally Identifiable Information (PII) about patients
require strict security measures. These systems are often referred to as Electronic
Health Records (EHRs), which include patient information created by a health
professional, such as laboratory reports, X-ray films, correspondence between
health professionals, and so forth.

EHR repositories might be managed by different entities: General Practition-
ers (GPs) in their office systems, ward or hospital departments, or even by a
group of hospitals that could build a circle of trust that share, under some reg-
ulations, patient information. As explained in [2], there are several scenes that
arise from the EHR management problem, ranging from how to administrate
policies in the parameters of EHR access control policies (e.g. groups, roles,
etc), to EHR Single-Sign On and transfer of EHR data within an administrative
domain. Two very interesting and frequent scenes include reading and writing
into an EHR, that could be done in emergency mode, setting a flag that may
relax the access control policies.

There are other scenarios in the context of e-Health beyond EHR manage-
ment, as discussed in [2]. These scenarios might entail the use of Internet of
Things (IoT) technologies to provide ubiquitous patient monitoring, and the
management of patient consent for the transfer of his or her information to
other administrative domains.

Since EHR management is a scoped scene, we have chosen this for the appli-
cation of our model, which is presented next.

6.2 Application of the Model

We proceed to explain the model with the chosen case study.
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Entities and Tasks. Access control decisions might be made based on the
trust level between the entities in a system. Entities might place trust on each
other so that the trust system can decide whether an entity is granted access
to a resource. In our example, this resource is the EHR. As explained in the
preceeding section, EHR might be managed and accessed by different entities,
including general practitioners, hospital departments, patients, or even groups of
hospitals. For the sake of generalization, we do not make any assumptions about
the type of entities, as we only consider that several entities want to access the
EHR with different purposes. From now on, we refer to this entites as e1, e2,
and e3.

Regarding the tasks that these entities perform on the EHR, we have chosen
reading EHR, writing into EHR, both in regular and emergency mode. We could
have chosen other groups of tasks, for example, related to the EHR internal
transfer scene. This would include tasks such as transfer a record, transfer a
group of records, transfer x-ray images, transfer hand-written scans, and so forth.
For our example, let x1 = Reading EHR, x2 = Writing into EHR, x3 = Reading
EHR in emergency mode, and x4 = Writing into EHR in emergency mode.

Ordering the Tasks. Up to now, we have identified the entities and the tasks of
our system. Now we assume, as described in Definition 4, that a risk assessment
process is carried out by each entity ei for each task xj by a function Rei(xj).
Once each entity has assessed the risk for a task x, a final risk function R(x) is
applied to compute the final risk value for the task.

The left side of Figure 4 shows a possible outcome of this process. Each
position in the table represents the risk assigned by the entity in that row to the
task in that column. For example, the number 3 in the position (1,2) represents
Re1(x2). The last row is the final risk computation for each task, that is, R(xi).
We have assumed that the function R is the average risk, which is rounded down.
We have also assumed that entities follow the same numeric range to assign risk
values to the task (e.g. a discrete number between 0 and 10). The value R

x1 x2 x3 x4

e1 6 3 8 7
e2 5 5 7 7
e3 7 4 8 4

R 6 4 7 6

Fig. 4. E-Health Tasks Dependencies

(average risk in this example) determines the order � among the tasks, which
is depicted on the right side of Figure 4. The following relations are established:
x3 � x1, x3 � x4, x1 � x2, and x4 � x2.
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Sketching the Graph of the Lowest Task. Since task x3 (i.e. reading EHR
in emergency mode) is the lowest task (i.e. the highest risky task), the trust
manager has to sketch an initial trust graph for this task. For this purpose, the
trust manager could query the entities. Let us assume that the resulting trust
graph for task x3 is the one shown in Figure 6a. Note that e2 does not place trust
on e1, nor does e3 on e2. This is why there is not an arrow in these directions,
although a trust relation does exist in the other way around.

Calculating the Entities Divergence. The goal of the model is to compute
the trust graphs for the rest of the tasks from the trust graph of the lowest
task, namely x3. The first step is to calculate how much the divergence between
entities is, according to Definition 5. Considering the risk values from Figure 4,
the divergence values are computed and shown in Table 1. Also note that the
concept of Entities Divergence is symmetric.

Table 1. Entities Divergence Table

ED e1 e2 e3
e1 4 5
e2 4 7
e3 5 7

Just as an example, let us compute ED(e1, e3). According to Definition 5,
ED(e1, e3) = |Re1 (x1)−Re3(x1)|+ |Re1(x2)−Re3(x2)|+ |Re1 (x3)−Re3(x3)|+

|Re1(x4)−Re3(x4)| = |6− 7|+ |3− 4|+ |8− 8|+ |7− 4| = 5.

Calculating the Trust Incremental Values. The Trust Incremental Values
(see Definition 6) represent the core concept of the model. Each pair of entities
have a TIV for each task. Since mistrust is preserved in our model (see Defini-
tion 7), it is only required to compute the TIV for entities that place some level
of trust on another entity in a lower task. For example, it is not necessary to
compute TIV (e2, e1, xi) for any task xi, as e2 does not place trust on e1 in the
lowest task (see Figure 6a).

Our model does not impose a concrete way to compute TIV, but it just pro-
vides some criteria that should hold. According to these criteria, some possible
TIVs are shown in Figure 5. These values have been established considering both
the risk assessed by the trustee (represented as the column), and the entities di-
vergence.

Computing the Final Trust Values. We have all the required information
to apply Definition 7, that is, the actual model. At this moment, we have to
remember the task order depicted in Figure 4.

We have to compute the trust values for x1 and x4 from the trust values of
x3 (see Figure 6a). These trust graphs are depicted in Figure 6b and Figure 6c,
respectively.
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TIV for x1 e1 e2 e3
e1 1.3 1.4
e2 1.1
e3 1.2

TIV for x4 e1 e2 e3
e1 1.8 1.1
e2 1.05
e3 1.4

TIV for x2 e1 e2 e3
e1 1.3 1.1
e2 1.05
e3 1.05

Fig. 5. TIVs for x1, x4, and x2

Just as an example, let us do the calculation to obtain the trust that e3 places
on e1 to perform x4. Applying Definition 7,

Fx4(e3, e1) = TIV (e3, e1, x4)Fx3(e3, e1) = 1.4 ∗ 0.5 = 0.7

(a) Trust Graph for
Task x3

(b) Trust Graph for
Task x1

(c) Trust Graph for
Task x4

Fig. 6. Trust Graphs for EHR Scenario

Finally, we should compute the trust values for x2 from those of x1 and x4.
Here we have to cope with the case described in Section 5.1, that is, to compute
the trust values for one task from the trust values of more than one task. As
explained in that section, if we want to ensure the preservation of assumption 1
(see Section 4.3), we have to proceed as follows: first, for a pair of entities, we
examine their trust values in x1 and x4. Then, we chose the higher trust value,
and apply the model to it, multiplying by the TIV of x2. The final graph for
task x2 is depicted in Figure 7.

For example, to compute the trust value that e3 places on e1, we would chose
the trust value for that entities in x4 (0.7), thus:

Fx2(e3, e1) = TIV (e3, e1, x2)Fx4(e3, e1) = 1.05 ∗ 0.7 = 0.73

Otherwise, to compute the trust value that e1 places on e3, we would chose the
trust value for that entities in x1 (0.7), thus:

Fx2(e1, e3) = TIV (e1, e3, x2)Fx1(e1, e3) = 1.1 ∗ 0.7 = 0.77

After applying the model, we have the initial trust values for all the entities
and tasks. From this point onward, another trust model should be in charge
of updating the trust values according to the interactions between the entities.
For this purpose, it might be required to map the trust values generated in our
model to those trust values in the range of the latter model.
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Fig. 7. Trust Graph for x2

7 Conclusions and Future Work

We have proposed a model to compute trust values in a multi-task system. A
multi-task system is characterized because many tasks can be performed by
many entities. These tasks, in turn, impose different trust conditions between
the entities. The first step in order to achieve our goal has consisted on defining
a partial order between these tasks. Then, we automatize the trust evaluation
process along this order while respecting some trust assumptions.

Our proposal assumes that the trust graphs for the lowest tasks are provided.
Given that there is not information about the entities, this initial assignment
might have an influence on the rest of the process. Further research on how to
avoid or minimize the impact of this step on the whole process would be very
relevant.

Furthermore, a concrete definition of TIV that respects its properties is open
to future research, analyzing different alternatives and their impact on the trust
values calculation.

An efficient tool implementation, through which to model the tasks order and
to automatically generate and draw the trust graphs, would be interesting as
future work. Finally, a validation of this tool with the NESSoS scenarios would
be very relevant, as this validation could be further used to refine the model and
the tool implementation.
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Abstract. Having a precise vulnerability discovery model (VDM) would
provide a useful quantitative insight to assess software security. Thus
far, several models have been proposed with some evidence supporting
their goodness-of-fit. In this work we describe an independent validation
of the applicability of these models to the vulnerabilities of the popu-
lar browsers Firefox, Google Chrome and Internet Explorer. The result
shows that some VMDs do not simply fit the data, while for others there
are both positive and negative evidences.

1 Introduction

The vulnerability discovery process normally refers to the post-release stage
where people identify and report security flaws of a released software. Vulnera-
bility discovery models (VDM) operate on the known vulnerability data to do a
quantitative estimation of the vulnerabilities present in the software. Successful
models can be useful hints for both software vendors and users in allocating re-
sources to handle potential breaches, and tentative patch update. For example,
we do not exactly know the day of major snow falls but cities expect it to fall
in winter and therefore plan resources for road clearing in that period.

In this paper we consider six proposed VDMs. The first model is Anderson’s
Thermodynamic(AT) [5]. Rescorla proposed two other models [11]: Quadratic
(RQ) and Exponential (RE). The fourth model considered here is Alhazmi &
Malaiya’s Logistic (AML) model [2]. The fifth is directly derived from a software
reliability model, Logistic Poisson (LP) (a.k.a Musa-Okumoto model). The last
model is the simple linear model (LN).

Among these models, the AML model has been subject to a significant
experimental validation: from operating systems [1, 2, 3, 4] (i.e., Windows
NT/95/98/2K/XP, Redhat 6.2/7.1 and Fedora) to browsers [14] (i.e., IE, Fire-
fox, Mozilla), and web servers [15] (i.e., ISS, Apache). The results reported in
the literature show that there is not enough evidence to neither reject nor ac-
cept AML. Three browsers were considered: one is strongly accepted by AML
(Mozilla), one is strongly rejected (IE), and another one is unknown (Firefox).

� This work is supported by the European Commission under projects EU-FET-IP-
SECURECHANGE.

G. Barthe, B. Livshits, and R. Scandariato (Eds.): ESSoS 2012, LNCS 7159, pp. 89–96, 2012.
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Fig. 1. Google Chrome Firework of Vulnerability Discovery Trends

These inconsistent results may be caused by a combination of factors. First,
the authors did not clearly mention what a vulnerability is. For example, the Na-
tional Vulnerability Database (NVD) reports a number of vulnerabilities which
the security bulletin of the vendors do not classify as such. By considering dif-
ferent database we could get different trends.

The second problem is that the authors considered all versions of software as
a single application, and counted vulnerabilities for this “application”. Massacci
et al. [8] has shown that each Firefox version has its own code base, which may
differ by 30% or more from the immediately preceding one. Therefore, as time
goes by, we can no longer claim that we are counting the vulnerabilities of the
same application. To explain visually this problem, Fig. 1 shows in one plot the
cumulative vulnerabilities of the different versions of Chrome in which we restart
the counters for each version. It is immediate to see that there is not a single
“trend” but a “firework” effect where each version determines its own trajectory.

1.1 Contribution of This Paper

This paper presents an independent validation experiment on the goodness-of-fit
of six existing VDMs against the three most popular browsers: Firefox, Google
Chrome and Internet Explorer.

– We show that some model (AT) does not work completely. Some (LN, RE,
RQ, LP) might not work, and some (AML) may work.

– We find an interesting phenomenon that cumulative vulnerabilities of a life
long software may have many saturation points (where the number of vul-
nerabilities is stable) which might falsify all of existing VDMs.

The rest of the paper is organized as follows. In the subsequent section (§2),
we describe our research questions and how to find out the answers. Next we
briefly discuss existing VDMs and their formulae (§3). After that, we discuss the
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Bugzilla entry NVD entry MFSA Entry

This illustrates different abstract levels of vulnerability: from technical level (Bugzilla) to abstract
level (MFSA, Bugzilla). Bugzilla entry denotes technical programming issues (both security and
non-security ones). Security bugzilla are ones reported in an MFSA, or referenced by an NVD. The
overlaps between notations denote that an report might reference to another report.

Fig. 2. The vulnerability space of Firefox

methodology to conduct the experiment, and a discussion about the result in
our experiment (§4). Finally, we present potential threats (§5) to the validity of
our work and conclude the paper with future work (§6).

2 Research Questions

The primary question is “does this model fit the observed data?”. Frequently
when a new VDM is proposed, the authors have done some experiment to vali-
date the applicability of this VDM. Mostly, in their reports the proposed VDMs
often have good goodness-of-fit measures. As time goes by, the goodness-of-fit
may improve or deteriorate as more data become available (either in terms of
data point for the same software or new software to be considered as an instance).
This motivate our first research question:

RQ1. Are existing VDMs able to fit cumulative numbers of vulnerabilities of the
popular browsers (i.e., IE, Firefox, and Chrome)?

To find the answer, we touched another, major and almost foundational issue:
“what is a vulnerability?”. Most related work did not explicitly discuss this
question. Normally, a vulnerability is a security report describing a particular
problem of a particular application, for instance: a report in Mozilla Foundation
Security Advisories (a.k.a an MFSA entry), or an NVD report of NIST (NVD
entry). In the wisdom of many people, an NVD entry is a vulnerability, but there
are many other definitions [6, 7, 12].

Fig. 2 illustrates the vulnerability space of Firefox, in which different ’kinds’
of Firefox vulnerabilities are coexisted at different level of abstraction.

– Mozilla Bugzilla (or bug): contains very technical reports for vulnerabilities,
but also other normal programming bugs.

– NVD : holds high level third-party security reports for several applications,
including Firefox. Many NVD entries (gray ovals) mentioning Firefox main-
tain references to Bugzilla (black circles inside ovals).
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Table 1. Formal definitions of six VDMs in the study

Model Formula

Alhazmi-Malaiya Logistic (AML) Ω(t) =
B

BCe−ABt + 1

Anderson Thermodynamic (AT) Ω(t) =
K

γ
ln(t) + C

Linear (LN) Ω(t) = At + B
Logistic Poisson (LP) Ω(t) = β0 ln(1 + β1t)

Rescorla Exponential (RE) Ω(t) = N(1 − e−λt)

Rescorlar Quadratic (RQ) Ω(t) =
At2

2
+ Bt

– MFSA: are set of vendor’s high level security reports for Mozilla’s products.
Each MFSA entry (rounded rectangle) always references to one or more bugs
(black circles inside) responsible for this security flaw. MFSA also holds links
to corresponding NVD entries (overlapped ovals).

Depend on the judgement of analysts, different numbers of vulnerabilities are
observed and collected. Here, in Fig. 2, if we define a vulnerability is an MFSA, or
NVD, or Bugzilla, these numbers are respectively six, ten and fourteen. The fact
that we can have a large variance in numbers raise another research problem
“How do different definitions of vulnerability impact the VDMs’ goodness-of-
fitness?”. However, we do not present it here due to the limit of space.

3 Vulnerability Discovery Models

This section provides a quick glance about six VDMs. As denoted in [3], these
VDMs are main features of the vulnerability discovery models. Here, only the
formulae of these six models are discussed. The detail rationale of models as well
as the meaning of each parameter can be found in the original work or in [3]. All
these parameters are estimated using non-linear regression on observed data.

– Alhazmi-Malaiya Logistic (AML): proposed by Alhazmi & Malaiya [1], in-
spired by the s-shape curve.

– Anderson Thermodynamic (AT): the application of this model to vulnerabil-
ities is proposed in [5]. The term thermodynamic originates by the analogy
from thermodynamics, in which γ accounts for the lower failure rate during
beta testing compared to higher rates during alpha testing.

– Linear model (LN): this is the simplest model, and well known by most
people. Linear model is often used to express the trend line of data.

– Logistic Poisson (LP): is originated from the field of reliability engineering,
also known as Musa-Okumoto model.

– Rescolar Exponential (RE): is proposed by Rescorla [11] while attempting
to identify trends in the vulnerability discovery using statistical tests.

– Rescolar Quadratic (RQ): this model is also a work of Rescorla [11], inspired
by the Goel-Okumoto in software reliability engineering.
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Table 2. The goodness-of-fit of VDMs in other studies

The table reports goodness-of-fit from previous studies. Columns are applications of which
vulnerabilities are fitted. The number next to each application is citation to the correspond-
ing study.
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AML X ? ? ? ? X X X ? X ? X X - ? X

AT - - - - - -

LN - X ? - X ? - - - - -

LP - - - - -

RE ? ? ? - - - - -

RQ ? ? ? ? - - X ? -

4 Validation of VDMs

The validation is quire straight forward. We fit VDMs into the data set using
R [10] tool. The differences between expected values of each generated model and
observed values are calculated and tested by the chi-square (χ2) goodness-of-fit
test. This test is based on χ2 statistics calculated as follows.

χ2 =

n∑

i=1

(Oi − Ei)
2

Ei
(1)

Oi and Ei orderly denote the observed values and expected values generated by
VDMs. The smaller χ2, the higher goodness a VDM gains. In practice, a VDM
is acceptably fitted if the χ2 is less than a critical value, given a significant level
(α) and degrees of freedom. The p-value here represents the significance of the
differences between observed values and expected values. If the p-value is small,
differences are significant, not by chance. Thus, the smaller p-value, the stronger
evidence a VDM does not fit the data. Hence, we interpret the goodness-of-fit
based on the ranges of p-value as follows

– Not Fit : p − value ∈ [0 ∼ 0.05), the difference are not by chance. So, this
evidence is strong enough to reject the model.

– Good Fit : p−value[0.95 ∼ 1.0], the difference, in opposite with the previous,
is significant small. It is a strong evidence to accept the model.

– Inconclusive Fit : p − value ∈ [0.05 ∼ 0.95), there is not enough evidence
neither to reject nor accept this model.

Applying goodness-of-fit interpretation discussed above, Table 2 show the
goodness-of-fit of VDMs in other studies. In these studies, Windows 95/XP and
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This figure illustrates feature goodness in Table 3. The circles indicate cumulative vulnerabilities
at a certain time. The horizontal axis (X) is time-in-market measured by the number of months
since officially released. The vertical axis (Y) is the cumulative vulnerabilities.

Fig. 3. Goodness of VDMs on browsers in database NVD

RedHat 6.1 have been tested in two studies (i.e., [1,3]) of the same authors, but
they seem to be duplicated. Thus we will consider these two experiments as one.
According to the table, AML is the one that has been tested in various kinds
of applications, e.g., operating systems, web servers, and browsers. Most of the
cases, AML shows its outstanding performance (only 1 Not Fit over 13 tests).
On the contrary, AT model also did not work in all cases. For the other models,
the ratio between Not Fit and Inconclusive + Good Fit is more or less fifty-fifty.
Therefore, we cannot conclude anything about the performance of these models.

We run our experiment of five VDMs on seventeen releases. The experiment
produces 102 curves, which are impossible to show all of them. Fig. 3 shows
the some fitted plots of VDMs for releases using NVD data set. For Firefox
v1.0, the cumulative number of vulnerabilities has more than one linear periods.
This trend is against the recently three-phase model (i.e., learning, linear and
saturation) proposed by Alhazmi et al. [1]. So none of VDM is able to fit (either
Good Fit or Inconclusive Fit) this version. This trend of Firefox vulnerabilities
is caused by a large portion of v1.0’s code base is inherited in later releases.
Thus lots of vulnerabilities applied to Firefox v1.0 are discovered in the newer
releases [8]. This phenomenon slightly appears in IE v4.0, but the stable period of
this release is long enough1 for the AML model to obtain a Good Fit, nonetheless.
For Firefox v3.6 and Chrome v3.5, these releases are still young (less than 16
months old), the vulnerability discovery is in the linear phase. So any VDM that
supports linear modeling (or nearly linear), i.e., AML, LN, LQ, RQ, RE, has a
chance to fit the data.

1 A long stable period has larger degree of freedom in the χ2 test, thus there is more
chance that the p-value is less than the significant level 0.05.
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Table 3. The goodness-of-fit of VDMs using data set NVD

The goodness of fit of a VDM is based on p-value in the χ2 test. p-value < 0.05: not fit
(–), p-value ≥ 0.95: good fit (X), and inconclusive fit (?) otherwise.

Firefox Chrome IE

Model v1.0 v1.5 v2.0 v3.0 v3.5 v3.6 v1.0 v2.0 v3.0 v4.0 v5.0 v6.0 v4.0 v5.0 v6.0 v7.0 v8.0

AML – – ? ? ? ? X ? ? ? ? ? X ? ? – X
AT – – – – – – – – – – – – – – – ? –
LN – – X – X ? – – – ? – – – – – ? ?
LP – – X ? X X – – – – ? ? – X – X ?
RE – – X ? X X – – – – ? ? – X – ? ?
RQ – – – ? ? X – – ? ? ? ? – – – – X

Table 3 reports the goodness-of-fit for 102 curves. Here, instead of reporting
a big table of numbers, Table 3 shows the interpretation of p-value of the χ2

tests. This presentation also helps to study at higher abstract level than the raw
p-values. Basically, our result is consistent with others. In this table, there are
47 times VDMs can either well fit or inconclusively fit the data, and 55 times
they do not work. Roughly speaking, the chance of not fit is about 50%. If we
look at each VDM particularly, the AML model appears to be the best one as
it obtains more positive results than others. In contract, the AT model seems
to be the worst because it could only fit one release (IE v7.0). Meanwhile, other
models are equivalent in number of times being rejected and accepted, except
the LP model which is likely a bit better. Even though our result confirms the
conclusion in previous studies, we still could not claim any strong argument
about the goodness-of-fit of these VDMs since the goodness-of-fit might change
overtime as more data will be available. We can only say that at the time when
we collect data, AML is the best model that can fit most releases in our study;
AT model apparently does not applicable; and other models work in haft way.

5 Threats to Validity

Bias in Data Collection. This work employs the same technique discussed
in [9] to parse HTML pages of MFSA, and process the XML data of NVD
and Bugzilla. Even though the collector tool has been checked for multiple
times, it might contain bugs affecting to data collection.

Error in Curve Fitting. We estimate the goodness-of-fit of VDMs by using
the Nonlinear Least-Square technique implemented in R (nls() function).
This might not produce the most optimal solution. That essentially impacts
the validity of this work. To mitigate this issue, we additionally employ a
commercial tool i.e., CurveExpert Pro2 to cross check the goodness-of-fit.

6 Conclusion and Future Work

In this work we validated the goodness-of-fit of several VDMs on the three most
popular browsers: IE, Firefox and Chrome. Our validation took into account

2 http://www.curveexpert.net/, site visited on 16 Sep, 2011.

http://www.curveexpert.net/
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the definition of vulnerability which is not adequately considered in previous
studies. However we have not enough room to report the result. Even though
our experiment is consistent with other studies, but all the experiments so far
have only reported the goodness-of-fit of these VDMs at certain time points of
a software life cycle. Meanwhile, we need to analyze the evolution of each model
in a long period and see how the goodness-of-fit evolves to have a better insight.

Additionally, we have shown the potential impact of different understanding
about what a vulnerability is. Hence, it would be interesting to study which one
is more appropriate for VDMs in general.
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Abstract. The composition of processes is in general not secrecy pre-
serving under the Dolev-Yao attacker model. In this paper, we describe
an algorithmic decision procedure which determines whether the com-
position of secrecy preserving processes is still secrecy preserving. As a
case-study we consider a variant of the TLS protocol where, even though
the client and server considered separately would be viewed as preserv-
ing the secrecy of the data to be communicated, its composition to the
complete protocol does not preserve that secrecy. We also show results
on tool support that allows one to validate the efficiency of our algorithm
for multiple compositions.

1 Introduction

The question of compositional model-checking [5] is crucial for achieving scalable
verification of systems. Moreover, compositionality of secure protocols can cause
unforeseen problems (see for example problems on the SAML based single-sign-
on used by Google in [3]). Although this question has been studied extensively in
the literature, in this paper we propose a novel methodology to specify protocols
such that given a finite set of session variables, compositionality is decidable.
This is equivalent to restrict the analysis of processes to finitely many runs. In-
deed vulnerabilities in authentication protocols have been shown to be limited
to finitely many parallel instantiations [14]. Technically, our analysis generates
finite dependency trees that can be stored for further deciding on future com-
positions. The process of merging such trees can be shown to be empirically
more efficient than re-analysing the composition from scratch, and constitutes
our central contribution. Moreover, this process is relatively sound and complete
with respect to the First Order Logic analysis of [10].

To validate our approach we have implemented our algorithm as an extension
to the UMLsec Tool Suite. This validates the usability of the approach in a
formally sound Software Development process, and has allowed us to measure
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E ::= expression
d data value (d ∈ D)
N unguessable value (N ∈ Secret)
K key (K ∈ Keys)
inp(c) input on channel c (c ∈ Channels)
x variable (x ∈ Var)
E1 :: E2 concatenation
{E}e encryption (e ∈ Enc)
Dece(E) decryption (e ∈ Enc)
Signe(E) signature creation (e ∈ Enc)
Exte(E) signature extraction (e ∈ Enc)

Fig. 1. Grammar for simple expressions in the Domain-Specific Language

the efficiency of our approach given the derivation trees for up to 500 small
components (amounting to about 1000 messages).

This paper is organized as follows: Sect. 2 presents some preliminaries about
stream processing functions, composition and secrecy. Sect. 3 describes the main
verification strategy, whereas Sect. 4 shows its application to an insecure variant
of TLS. Sect. 5 reports on efficiency of the decision procedure compared to re-
verification. Finally, Related Work is discussed on Sect. 6 and we conclude with
Sect. 7.

2 Preliminaries

In [10] the underlying process model used to model component communication
is based on Broy’s stream-processing functions [4]. A process is of the form
P = (I,O, L, (pc)c∈O∪L) where I ⊆ Channels is called the set of its input channels
and O ⊆ Channels the set of its output channels and where for each c ∈ Õ

def=
O ∪ L, pc is a closed program with input channels in Ĩ

def= I ∪ L (where L ⊆
Channels is called the set of local channels). From inputs on the channels in Ĩ at
a given point in time, pc computes the output on the channel c. Each channel
defines thus a stream processing function based on its input variables allowing
for a rigorous notion of sequential composition, which is denoted by ⊗. For
cryptographic protocol analysis, the programs are specified in a domain specific
language defined by the expressions as in Fig. 1 and a simple programming
language with non-deterministic choice (where loops can be modelled by using
local channels). To proceed with the Dolev-Yao secrecy analysis, one defines rules
to translate programs to first-order logic formulas. With the predicate knows(E)
we can express the fact that an adversary may know an expression E during
the execution of the protocol, therefore it models the man in the middle. For
example, if-constructs are translated by the following formula:

φ(if E = E′ then p else p′) = ∀i1, . . . , in.
[
knows(i1) ∧ . . . ∧ knows(in) ⇒

[E(i1, . . . , in) = E′(i1, . . . , in) ⇒ φ(p)]
∧ [E(i1, . . . , in) �= E′(i1, . . . , in) ⇒ φ(p′)]

]
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To verify the secrecy of data s ∈ Secret, one then has to check whether the
adversary can derive knows(s), given the formulas that arise from the evaluation
φ of the single program constructs and the following axioms:

∀E1, E2.
[
knows(E1) ∧ knows(E2) ⇒ knows(E1 :: E2) ∧ knows({E1}E2) ∧ knows(SignE2

(E1))
]

∧ [
knows(E1 :: E2) ⇒ knows(E1) ∧ knows(E2)

]

∧ [
knows({E1}E2) ∧ knows(E−1

2 ) ⇒ knows(E1)
]

∧ [
knows(Sign

E−1
2

(E1)) ∧ knows(E2) ⇒ knows(E1)
]

The conjunction of the formulae φ for all channel programs of a process is called
ψ. In the following, we will discuss composition at the level of this First Or-
der Logic translation and not at the underlying stream processing function level
because the FOL translation contains implicitly all the possible actions an ad-
versary process could perform (defined by the structural formulas). Moreover,
and adversary that completely controls the communication channels between
processes, might act as an adaptor creating unforeseen compositions between
input and output channels. Therefore we want to approximate the knowledge
an adversary can gain given all possible outputs of the processes (considering all
possible well-formed inputs).

3 Decision Procedure

If we assume that both P and P ′ preserve the secrecy of the data value s, our goal
is to show a procedure so that we can decide if ψ(P ⊗P ′) � knows(s). In general
this does not hold. For example consider a process P which outputs {s}K and
a process P ′ which outputs K−1. Independently this both processes preserve
the secrecy of s, but when composed an adversary could trivially compute s.
To achieve this, we will construct proof artifacts on each single process called
derivation trees. Moreover, in order ensure that this trees are finite, we will
require that the number of keys and nonces are also finite and that the conditions
in the “if” constructs of the process programs admit only variables that are of
type key or nonce. This will imply the decidability of our approach.

Definition 1 (Subterm). We say that a symbol x is a subterm of the symbol
T and denote it x ∈̂T when one of the following holds:

x=T
T={T’}K and x ∈̂T’
T=SignK{T′} and x ∈̂T’
T= h::k and x ∈̂ h or x ∈̂ k

Example s ∈̂ {s}K but is not true that K ∈̂ {s}K. We denote this by K ˆ�∈ {s}K.
This means that an adversary could potentially compute s from {s}K using the
structural formulas with the necessary previous knowledge, but he could not
compute K.
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Definition 2 (Inverse). Let x ∈̂ J. We define the cryptographic inverse of a
symbol J with respect to x and denote it J−1(x) in the following way:

x−1(x) = ε
If J=h::k and x ˆ�∈ h then J−1(x)=k−1(x)
If J=h::k and x ˆ�∈ k then J−1(x)=h−1(x)
If J=h::k and x ∈̂ k, x ∈̂ h then J−1(x) = and(h−1(x), k−1(x))

If J={J’}K or J=SignK{J′} then J−1(x) = or(J′−1
(x),K−1).

Example Let J = {{s}K1}K2 . Then J−1(s) = or(K−1
1 ,K−1

2 ) which we will interpret
later as “to preserve the secrecy s we need to preserve either K−1

1 or K−1
2 ”.

Let ψ(P ) be the first order logic formula associated to P . We define ψ̄(P ) to
be the set of instantiated formulas of ψ(P ) with all possible values satisfying the
constraints in ψ(P ). Since we require that all constraints only contain variables
of type key or nonce, and that the respective sets are finite, then ψ̄(P ) is also
finite. It is possible to show by induction on the program constructs that ψ̄(P )
consists of formulas Fi of the form knows(Ei) ⇒ knows(Ji) for closed expressions
Ei and Ji. Let Pres(x,P) be the following inductively defined predicate:

[( ∀Fi ∈ ψ̄(P ) x ˆ�∈ Ji ) ⇒ Pres(x,P))
∧ ( ∀Fi ∈ ψ̄(P ) (x ∈̂ Ji) ⇒ ((Pres(Ei,P) ∨ Pres(Ji

−1(x),P))
∧ ( (x = {x’}K ∨ x = SignK{x′}) ⇒ (Pres(x’,P) ∨ Pres(K,P))
∧ ((x = h::k ⇒ (Pres(h,P) ∨ Pres(k,P))
∧ ((x = and(h,k) ⇒ (Pres(h,P) ∧ Pres(k,P))
∧ ((x = or(h,k) ⇒ (Pres(h,P) ∨ Pres(k,P)) ]
⇒ Pres(x,P)

and ¬Pres(ε,P). If we can not derive Pres(x,P) for some x, it follows ¬Pres(x,P).

Theorem 1. If it is possible to derive Pres(x,P) (conversely ¬Pres(x,P)) then
ψ(P ) � knows(x) (ψ(P ) � knows(x)).

Proof idea In case ¬Pres(ε,P) since knows(ε) ∈ ψ̄(P ) for all P . If ∀Fi ∈ ψ̄(P )
x ˆ�∈Ji that means that there is no formula in ψ̄(P ) containing x in a conclusive
position, and therefore there is no way to derive knows(x) from the structural
formulas. Now assume it is possible to derive Pres(x,P). We have already covered
the base cases so we can assume that ψ(P ) � knows(y) for all the Pres(y,P) y �=
x needed in the precondition. Since in this formulas all the cases where we could
apply the Structural Formulas are covered, it is impossible to derive knows(x).
The case ¬Pres(x,P) is similar. �

Notice that the converse does not hold, that is ψ(P ) � knows(x) does not
mean we can derive Pres(x,P), because for some pathological cases we will have
an infinite loop, for example for ψ̄(P ) = knows(x) ⇒ knows(x). It is although easy
to detect and avoid this loops in a machine implementation of the preservation
predicate by running an initial check on the formulas. This makes the verification
of the Pres(x,P) predicate sound and complete with respect to the First Order
Logic embedding of the process programs.
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Fig. 2. Processes P and P ′ before and after composition

As we derive Pres(s,P) for some symbol s and formulas P , we can build a
derivation tree consisting of the symbols we need to consider to be able to con-
clude the preservation status of s. If we generate and store the derivation tree for
every symbol x appearing in a process P in a relevant position (that is x ∈̂ Ji for
some i), then we can decide whether the composition with process P ′ will pre-
serve the secrecy of any given symbol if we also have the derivation trees for P ′.
Consider for example P = ({s}h::t,K

−1
2 ) and P ′ = ({h}K2 , t). The symbol de-

pendency trees of both process are depicted in Fig. 2 (the symbols in red are the
ones which secrecy is compromised). Clearly both processes preserve separately
the secrecy of s. To see if the composition also does, we update the information
on the tree of s by checking whether the truth values of h and t are altered by
the composition as depicted in Fig. 2.

4 An Insecure Variant of the TLS Protocol

As an example we apply our approach to a variant of TLS [2] (not the version of
TLS in current use) that does not preserve secrecy as a composition of the client
C, the server S and the authority CA . We have that the predicate for C and S
after the programs are translated to F.O.L are (for details on the translation see
[10]) :

ψ(C) = knows(NC :: KC ::Sign
K−1

C
{C :: KC}) ∧ (knows(s2)∧knows(s3) ⇒ knows({m}y))

ψ(S) = knows(c1) ∧ knows(c2) ∧ knows(c3) ⇒ knows(NS :: { Sign
K−1

S
{kCS :: c1} }c2)

where {s3}KCA = S :: x ∧ {DecK−1
C

(s2)}x = y :: NC and {c3}c2 = C :: c2
where key(c2), key(x) and key(y). The set of keys is Keys = {KA,K

−1
A , kCS , kA,

KC ,K
−1
C ,KS,K

−1
S ,KCA,K

−1
CA} where kCS and kA are symmetric keys. The nonces

are Nonces = {NC , NS , NA}. We assume that the authority CA has already dis-
tributed certificates to all parties and that the adversary is in possession of this
information: knows(KCA) ∧ knows(Sign

K−1
CA
{S :: KS}) ∧ knows(Sign

K−1
CA
{A :: KA}).

We further assume that an adversary posses a key pair knows(KA)∧knows(K−1
A ).

Now we show that C ⊗ S does not preserve the secrecy of m although C and S
separately do. First of all, in order to be able to apply our approach and gener-
ate the dependency tree, we have to solve the constraints for all the processes
involved. So we have:
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NC ∨KA ∨ SignK−1
A
{C :: KA}

kCS

∨ K−1
A ∨KS SignK−1

S
{kCS :: NC}

NC ∨KA ∨ SignK−1
A
{C :: KA} K−1

A

{SignK−1
S
{kCS :: NC} }KC

∨ KC

{SignK−1
S
{kCS :: NC}}KC

m

∨ kCS

Fig. 3. Partial trees for m in C and for kCS and { Sign
K−1

S
{kCS :: NC} }KC in S

ψ̄(C) = knows(NC :: KC ::Sign
K−1

C
{C :: KC})

∧ (knows({ Signx−1{y :: NC} }KC ) ∧ knows( Sign
K−1

CA
{S :: x} ) ⇒ knows({m}y))

where x ∈ {KC ,KS,KA} (the public keys) and y ∈ {kA, kCS} (the symmetric
keys). We do not explicit the whole dependency tree for C but we note that the
secrecy of m is preserved because: if y = kCS the adversary does not have knowl-
edge of kCS ; if y = kA the adversary would need knowledge of Signx−1{kA :: NC}
and SignK−1

CA
{S :: x} for some x. Since he only knows SignK−1

CA
{S :: KS} then

x = KS. In that case to gain knowledge of SignKS
−1{kA :: NC} he needs to

posses KS
−1 which he does not. In Fig. 3 we depict partially this dependency

tree for the case y = kCS , x = KS . Now, the instantiated formulas for S are:

ψ̄(S) = knows(c1) ∧ knows(c2) ∧ knows(Sign
c−1
2
{C :: c2})

⇒ knows(NS :: { Sign
K−1

S
{kCS :: c1} }c2)

with c1 ∈ {NS , NC , NA}, c2 ∈ {KC,KS ,KA}. The secrecy of m is preserved in
S simply because m is not a subterm of any formula in S.

To see why the composition fails to preserve secrecy, we illustrate (partially)
the dependency trees of kCS and { SignK−1

S
{kCS :: c1} }c2 in case c1 = NC and

c2 = KA in Fig. 3. In fact, since C leaks NC and KC , kCS turns to be not
secret after composition in the tree of S. This also modifies the secrecy status of
{ SignK−1

S
{kCS :: NC} }KC which results in a secrecy violation for m after updat-

ing the tree of C. We have performed a similar analysis for a fix to this protocol
proposed in [10] where the composition preserves secrecy but for space reasons
we do not explicit the details here.

5 Validation and Efficiency

We have implemented our approach as an extension to the UMLsec tool sup-
port 1. That is, we can extract the protocol specification from a sequence diagram
using the DSL described in Sect. 2 and translate it to First Order Logic. Since
by construction each guard accepts only finitely many messages (depending on

1 http://www-jj.cs.tu-dortmund.de/jj/umlsec/

http://www-jj.cs.tu-dortmund.de/jj/umlsec/
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Table 1. Execution times of our experiment

# # Generation Composition
Messages Compositions trees (ms) (ms)

11 5 3660 47
21 10 6214 88
31 15 9323 114
51 25 15406 198
101 50 31730 401
501 250 182771 1948
1001 500 375474 3963

the set of keys and nonces), we can build finite dependency trees for all relevant
symbols by means of a properly generated prolog program.

Reasoning about composition amounts then to join the trees from two pro-
cesses. Therefore, we can at least avoid to recompute the constraint solving for
the single processes. We have conducted experiments to measure the time of
the composition, and compare it to the overall process of constraint-solving and
prolog generation as depicted in Table 1. The first column contains the number
of messages for a single session of the composition and the second column cor-
responds to the number of composed processes. The third column is the time
in ms. needed to extract the FOL formulas from the UML diagram and gen-
erate the derivation trees. The last column is the time needed for deciding the
composition given the single derivation trees. In other words, if we would have
a repository of 500 processes that by themselves are secrecy preserving, and we
would like to check whether the composition of any 5 of them is also secrecy
preserving, it would be highly desirable if we could use the existing results as
opposed to re-verify from scratch every time.

6 Related Work

Overviews of applications of formal methods to security protocols can be found
for example in [1,12], some examples in [11,13]. The question of protocol compo-
sition has been studied by different authors. More prominently, Datta, Mitchell
et al. [6] have defined the PCL (Protocol Composition Logic), aimed at the verifi-
cation of security protocol by re-using proofs of sub-protocols using a Hoare-like
logic, focusing on authenticity. Guttmann [7] gives results about protocol com-
position at a lower abstraction level, considering unstructured ‘blank slots’ and
compound keys that result from hashes of other messages. Jürjens [9] has ex-
plored the question of composability aiming at given sufficient conditions under
which composition holds. Stoller [14] has computed bounds of parallel executions
that could compromise the authenticity of protocols. These approaches aim at
giving at a collection of theorems that if satisfied by two protocols in a composi-
tion, ensure a given property. One must show (by using a theorem prover, or by
hand) that some properties are satisfied by both protocols like disjointness in
[8]. Our approach differs from this assume/guarantee reasoning in that we effi-
ciently check whether the composition harms secrecy given pre-computed ‘proof
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artifacts’: the dependency trees. In other words, we give accurate results about
compositions (that are equivalent to re-verification), by amortizing the cost of
verification at an initial phase.

7 Conclusions

The problem of compositionality is of particular importance for software devel-
opment when the security of reusable components has been established, since
guarantees about the composition are needed. The decision procedure should
also scale efficiently to be of practical use, and most of all, sound. We have
shown that our procedure is sound and complete with respect to previous work
on First Order Logic protocol verification. This comes at the price of an initial
verification of the single components that considers all the possible acceptable
messages. Nevertheless, this is compensated when it comes to decide compo-
sitionality with an arbitrary process for which the same process has also taken
place, since this can be done very efficiently, as we have empirically tested. There
are different ways in which this work could be further extended. On the one hand,
one can further explore the efficiency of the approach, for example by formally
deriving its complexity . On the other hand, one could extend the approach to
cope with the preservation of other security properties like authenticity.
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Abstract. In this paper, we show how an attacker can launch malware
onto a large number of smartphone users by plagiarizing Android appli-
cations and by using elements of social engineering to increase infection
rate. Our analysis of a dataset of 158,000 smartphone applications meta-
information indicates that 29.4% of the applications are more likely to
be plagiarized. We propose three detection schemes that rely on syntac-
tic fingerprinting to detect plagiarized applications under different levels
of obfuscation used by the attacker. Our analysis of 7,600 smartphone
application binaries shows that our schemes detect all instances of plagia-
rism from a set of real-world malware incidents with 0.5% false positives
and scale to millions of applications using only commodity servers.

1 Introduction

Smartphone applications repositories have been growing at a high rate with sup-
port from hundreds of thousands of developers. AppStore [1] contains more than
half-a-million applications, and Android Market [2] has just crossed the two hun-
dred thousand mark. The two repositories use different procedures for accepting
an application. Apple’s AppStore accepts only applications that have been tested
for potential vulnerabilities by Apple’s test engineers. Android Market accepts
applications without subjecting them to any code review or inspection.

The approach of being open allows the Android Market to make applications
immediately available to users. However, this also makes it an easy target for
attacks where plagiarized applications are used by an attacker as means to launch
malware or gain personal profits. First, an attacker can easily reverse engineer
applications using existing tools. Second, an attacker can easily manipulate any
arbitrary application from the market and re-pack it under his name. Third, the
attacker can leverage the centralized nature of the market, dashboard features
that make applications immediately available to users, and social engineering
(e.g., using catchy titles) to push malicious applications to a large number of
victims. Thus, an attacker can easily download a popular application, insert
malicious code into the application, and resubmit the malicious version back
into the market without being detected. We refer to this class of actions as
plagiarism and to the modified application as a plagiarized application.

While several plagiarizing incidents [3, 4] targeting applications from the An-
droid Market have been reported, there are currently no fool-proof preventative
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mechanisms in place to detect plagiarism in open markets. Signature-based mal-
ware detection tools such as Lookout Security [5], Norton Mobile Security [6]
and BitDefender Mobile Security [7] detect applications that contain malware.
However, they do not detect plagiarized applications that use legitimate per-
missions, users will still be infected before an attack signature is learned, and
the number of infected users can be large due to the centralized nature of mar-
kets. Information leakage detection techniques based on taint analysis [8], access
control policies [9], and kernel modifications [10] protect against stealing crit-
ical user information. However, such schemes require significant user input in
order to achieve high accuracy. In addition, most of these techniques work on
the client-side and often demand heavy resources that lead to battery drain.

Contributions: In this paper we propose a solution that detects plagiarized
applications and prevents their acceptance into the market. As a result, our
approach raises the bar for the attackers, forcing them to create original ap-
plications to host their malware. Our solution is designed to be applied on the
market side and is complementary to client-side defense techniques such as mal-
ware detection and information leakage prevention. Our contributions are:

– We analyze the meta-information of 158,000 applications from the Android
Market and find that 29.4% of the applications are more likely to be plagiarized
because of the permission rights they provide to an attacker. We also found that
an attacker can use category, total number of downloads, and published weekday
to increase the first-day number of downloads for the plagiarized application.

– We propose three schemes Symbol-Coverage, AST-Distance, andAST-Coverage
that rely on symbol tables and method-level Abstract Syntactic Tree (AST) fin-
gerprints to detect plagiarized applications under different levels of obfuscation
used by the attacker. Our analysis of 7,600 smartphone application binaries
shows that our schemes can detect all instances of plagiarism from a set of real-
world malware incidents while having only a 0.5% false positive rate.

– We show that our detection schemes scale to millions of applications using
commodity servers, i.e. it takes 2-8 seconds to reverse-engineer and fingerprint an
application and 0.8-1.4 seconds to retrieve plagiarized versions of an application.

The rest of the paper is organized as follows. Section 2 describes our system
and threat model. Section 3 presents more details about how an attacker can
plagiarize applications. Section 4 gives an overview of our defense solution, and
Section 5 presents its evaluation. Section 6 discusses related work and Section 7
concludes our paper.

2 System and Threat Model

In this section we first give more details about the application submission pro-
cess in the Android Market. Then, we describe the resources and mechanisms
available to an attacker to plagiarize applications.
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2.1 Android Development Process

Android [11] is an open source software stack for mobile devices that includes
an operating system, an application framework, and core applications. The op-
erating system relies on a kernel derived from the Linux kernel. The application
framework consists of the Dalvik Virtual Machine [12] that runs .dex files. Ap-
plications are written in Java using the Android SDK [13], compiled into .dex
(Dalvik Executable), and packaged into .apk (Android package) archives for in-
stallation.

To submit an application, a developer must have a publisher account obtained
by paying a nominal one-time fee of �25.00 USD and by having a valid Gmail ac-
count. He can then upload the application, optionally setting the price for a paid
application. Each binary is accompanied by meta-information which includes:
name, rating, date updated, version, category, number of installs, size, price, etc.
The Android Market requires that all applications are digitally signed, with the
public key made available as a digital certificate. As an optional step, developers
can obfuscate their binaries through a tool called ProGuard [14] which removes
any debugging information and renames the identifiers (e.g., class, method, vari-
able names) while maintaining the same functionality.

2.2 Threat Model

The attacker collects sensitive information stored on smartphone devices or ob-
tains monetary profit by exploiting users. Examples of sensitive information
include usage information, IMEI numbers, and GPS location. Ways to obtain
monetary profit include redirecting ad-revenue or forcing smartphones to call
a toll number that is owned by the attacker. We assume that the attacker can
obtain a developer account for the Android Market without being traced by the
market administrators.

We consider attacks that exploit the popularity and permissions already avail-
able in existing applications. Thus, an attacker chooses an existing application
that already has permissions that can be exploited, modifies it according to
his needs, and uploads the modified version to an open market. The modi-
fied version not only has the same functionality as the original application but
also includes malicious code to collect sensitive information or obtain monetary
profit.

Android Market requires developers to use digital certificates to attest their
identity. However, it does not require a trusted certificate authority (CA) to
sign the certificates. Thus, digital certificates will not prevent an attacker from
plagiarizing an application. Establishing trust of developers through CAs would
hinder the openness of the markets. If CAs were to enforce high requirements to
deter malicious developers then many legitimate developers will also be excluded
from being trusted by the CA.
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2.3 Obfuscation Model

We assume that an attacker can apply the following obfuscation techniques:

– Level-1: Symbol table is obfuscated such that methods, classes, variables, and
other identifiers are all changed. The tool ProGuard provided by Google allows
only Level-1 obfuscation. To the best of our knowledge, this is the only kind of
obfuscation that is being applied in the real-world for mobile applications.

– Level-2: α random methods with no functionality are added. This level of
obfuscation has not been seen yet in real smartphone application repositories,
we nonetheless consider it as attackers can leverage it without substantial efforts.

While more advanced obfuscations have been proposed in the research commu-
nity [15, 16], their applicability to mobile applications remains unknown due to
the specific byte-code format and the tight resource and energy constraints.

3 Plagiarizing Applications

The goal of an attacker plagiarizing an application is to take advantage of its
popularity and collect sensitive information or obtain monetary profit. We first
describe the attack payloads that the attacker can embed inside the plagiarized
version of the application and then describe strategies that an attacker can
leverage to increase the overall infection count.

3.1 Plagiarism Mechanisms and Payload

An attacker resorting to plagiarism first downloads an application and obtains
the .dex files of the application. The attacker then uses one of the two approaches:
(1) direct byte-code insertion, (2) assisted byte-code insertion. In direct byte-code
insertion, the attacker writes his own bytecode into the application byte-code
and re-packages it into an APK package. This approach usually requires heavy
expertise in writing Dalvik specific byte-code but has the advantage that it
can evade detection of certain static analysis tools that rely on application-level
source code heuristics. In assisted byte-code insertion, the attacker first writes his
malicious code as part of a stub application and compiles it using the Android
SDK. The attacker reverse engineers his own APK to obtain the .dex files and
extracts relevant portions of the byte-code for insertion into the original appli-
cation and then re-packages it into a separate APK package. Possible payloads
for the plagiarized application include:

– Privacy Exploitation: If the original application requests for permissions
to obtain the GPS coordinates of the user (ACCESS FINE LOCATION) or to
read the user’s contact data (READ CONTACTS), the attacker can insert a
code snippet that obtains this information and sends it to back to the attacker.

– Monetary Exploitation: If the original application requests for permissions
to send SMS messages (SEND SMS) or to allow the application to initiate a
phone call without going through the Dialer user interface that forces users to
confirm the call being placed (CALL PHONE).
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Table 1. Attack payload collected from a dataset of 158,000 applications. A 29.4% of
the applications are susceptible to at least one payload listed in the table.

Permission Permission # of App. Possible Attack Payload
INTERNET ACCESS COARSE LOCATION 28,759 retrieve location through WiFi
INTERNET ACCESS FINE LOCATION 27,258 retrieve location through GPS
INTERNET READ CONTACTS 11,870 retrieve user’s contacts
INTERNET CAMERA 6,936 record/retrieve images from camera

ANY SEND SMS 7,652 send SMS messages
ANY CALL PHONE 8,074 place phone calls
ANY BRICK 11 permanently disable the device
ANY INSTALL PACKAGES 430 install arbitrary packages

To gain insights into how many applications are vulnerable to attacks we ex-
amined the meta-information (descriptive information about an application) of
158,000 applications that we collected from the Android Market. We count the
number of applications from our dataset that request permissions that can be
exploited for various types of attacks. The results presented in Table 1 show
that many applications require permissions that can be leveraged by attackers.
For instance, an attacker interested in sending SMS from legitimate phones can
choose applications to plagiarize out of a set of 7,652. We estimate that 29.4%
of the applications from our dataset are susceptible to at least one attack pay-
load listed in Table 1. Our findings are consistent with results in [17] which
showed that many Android applications violate the principle of least privilege
and request more permissions than needed.

3.2 Improving Infection Count

An attacker can increase the infection count of a plagiarized application by
carefully choosing what applications to plagiarize and what day of the week to
perform the attack. A good strategy for an attacker is to target applications that
can rapidly become popular the first day. The optimal strategy we found from
our dataset of applications is to plagiarize an Arcade & Action game that has
more than 250,000 downloads and release this plagiarized application on Sunday.

We extract from our dataset: (i) the category of the application, (ii) the num-
ber of downloads the first day the application was submitted, (iii) the current
download count, and (iv) the day of the week published. From our dataset of
158,000 applications, a subset of 36,000 applications have sufficient information
to extract these four pieces of information. We cannot obtain exact download
counts each day due to the way Android Market reports download counts in
ranges, so we simply assume the average of the upper and lower bound to be the
number of downloads (100-500 downloads is interpreted as 300 downloads).

We divide the 36 categories on the Android Market into 4 groups: {Personal,
Games, Media, Leisure}. Figure 1(a) shows a TreeMap [18] where each category
is represented by a rectangle with a size corresponding to number of applica-
tions and color corresponding to number of first day downloads. Clearly, some
categories have a much higher number of initial first day downloads compared
to other categories, e.g., the category Arcade & Actions achieves nearly double
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the downloads of the next highest category, Casual Gaming. Also, Games has
high first day download counts compared to the other groups. An attacker can
choose specific categories to achieve higher initial downloads since the category
choice affects initial download count.

We found that applications which have a high download count went viral on
their first day. Figure 1(b) plots the average download count on the first day
for each download range listed currently in the market. The applications that
have reached greater than 250,000 downloads are the most popular applications,
receiving four times the initial download count as opposed to the next highest
bracket of 50,000-250,000 downloads.

An attacker can also try to choose the day of the week to load the application
to increase the probability that the plagiarized application will become viral on
its first day. Figure 1(c) shows the average download count on the first day of an
application given the day of the week it was uploaded to the market. We have
between 3,996 and 5,750 samples for each day of the week, so we can confidently
conclude that an attacker can expect higher first day download counts by roughly
20% by selecting an appropriate day to execute the attack (e.g., weekends).

Fig. 1. Choosing an application based on: (a) category: the area of each rectangle
maps to the number of applications and the color corresponds to first day download
counts, (b) total downloads: number of applications is on top of each bar, (c) ap-
plication publish weekday: number of applications is on top of each bar

4 Detecting Plagiarized Applications

We first describe the extraction of symbol tables and application fingerprints
from binary code. We then describe how we use the extracted information to de-
tect potentially obfuscated plagiarized applications with three schemes Symbol-
Coverage, AST-Distance, and AST-Coverage. See Appendix for more detailed
descriptions of the algorithms presented in this section.
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Fig. 2. Reverse Engineering and Fingerprinting Procedure

4.1 Reverse Engineering and Fingerprinting Android Applications

Figure 2 shows how we obtain application fingerprints by starting with an ap-
plication binary. We first reverse engineer it to obtain an Abstract Representa-
tion (AR) of the corresponding source code. Then we use the AR to construct
method-level ASTs and extract feature vectors that represent the fingerprints.

Reverse Engineering. Android has a built-in open source disassembler called
dexdump. Given a .dex file, dexdump creates a dump file (IR code) of all the
classes and methods. We modified five functions: dumpClass, dumpMethod, dump-
Code, dumpSField and dumpIField1 to capture relevant method-related infor-
mation. Code Transformation is then used to obtain an AR based on pre-defined
rules for each statement type. A rule is a regular expression that captures the
various parts of the statement (such as method name, variable names, number of
arguments etc.). Once this information is captured, all variables are named alike
(e.g. x,y,z are all replaced with ARG). The advantage of using AR is that even if
the code is obfuscated through means such as variable re-naming, the syntactic
structure is preserved and any fingerprint generated out of this transformed code
will be the same for both obfuscated and non-obfuscated code.

Consider an excerpt from the IR representation of a larger method shown in
Figure 3(a). The example shows a method invocation that starts by defining the
type of invocation (virtual, static, direct, super or interface), then the registers
that are to be checked for the arguments, and finally the signature of the method
that is being invoked. We fingerprint the two most common types of invocations:
invoke-direct, which is used to invoke an instance method that is by nature
non-overridable (either a private method or a constructor) and invoke-virtual,
which is used to invoke a normal virtual method (a method that is not static
or final, and is not a constructor). For instance, the first invocation is made to
the init method of the super class android/app/Activity and the second to the
findViewById method of the Fuzzer class from our sample application. The Code
Transformation module rewrites this set of statements as seen in Figure 3(b).

Extracting Fingerprints. Once we have an abstract representation of the IR
code, we perform AST Construction which generates a special type of Abstract
Syntax Tree called the method-level Abstract Syntax Tree, for each method in the
byte-code. A method-level AST captures the following information: (i) Number
of arguments that the current method accepts, (ii) Other methods invoked by

1 While our tool is home-brewed and not ready for a production usage yet, we do ac-
knowledge the presence of several other promising tools [19, 20] that came out recently.
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Abstract Syntax Tree Feature Vector

METHOD

ARGUMENT DIRECT VIRTUAL

LOCAL LOCAL

vertical feature horizontal feature

Feature Index Count
METHOD
VIRTUAL
DIRECT

ARGUMENT
PARAMETER

LOCAL
METHOD-VIRTUAL
METHOD-DIRECT

VIRTUAL-PARAMETER
VIRTUAL-LOCAL

DIRECT-PARAMETER

1
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6
7
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10
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1
1
1
1
2
1
1
1
1
1
1

PARAMETER

Feature Index Count
DIRECT-LOCAL

METHOD-ARGUMENT
METHOD-VIRTUAL-PARAMETER

METHOD-VIRTUAL-LOCAL
METHOD-DIRECT-PARAMETER

METHOD-DIRECT-LOCAL
PARAMETER-PARAMETER

LOCAL-LOCAL
LOCAL-PARAMETER
PARAMETER-LOCAL

12
13
14
15
16
17
18
19
20
21

0
1
1
1
1
0
0
0
1
1

Final Feature Vector: <1,1,1,1,2,1,1,1,1,1,1,0,1,1,1,1,0,0,0,1,1>

Abstract Representation
.method public foo(ARG)
        invoke-direct {LOCAL}
        invoke-virtual {LOCAL, PARAM}
.end method

.method public foo(I)V
        invoke-direct {v2}, Landroid/app/Activity;.<init>:()V
        invoke-virtual {v1, v0}, Lcom/Fuzzer;.findViewById:(I)V;
.end method

(a) (b)

(c) (d)

Intermediate Representation

Fig. 3. Example of Fingerprinting an Applications

the current method with the invocation type, direct or virtual. Other syntactic
artifacts inside a method, such as assignment and conditional statements, are
precluded. For instance, consider the AST given in Figure 3(c). The root node is
always the METHOD label and subsequent nodes ARGUMENT, DIRECT, and
VIRTUAL denote the method has an argument and two function invocations,
one with the direct type and the other the virtual type. The children of the
second-level nodes then, are the registers that these methods are utilizing.

We then use the ASTs to extract a feature vector that represents the appli-
cation fingerprint. We adapt the structural feature extraction method in [21] to
work with the method-level ASTs that we constructed. For a given AST, we
record two types of patterns of structural information: (l,m)-leaf and n-path. A
(l,m)-leaf is a pair of leaf nodes having a common parent and is used to capture
the horizontal paths in an AST. In Figure 3(d), {LOCAL-PARAMETER} is one
such horizontal path in the AST. Note that an AST does not need to have any
(l,m)-leaf pairs. This can happen when the method does not have any argu-
ments or does not contain other methods that have arguments. An n-path is a
directed path of n nodes, i.e., a sequence of n nodes in which any two consecu-
tive nodes are connected by a directed edge in the tree. DIRECT-LOCAL is one
such vertical path in the AST. Other vertical paths are: {METHOD, METHOD-
ARGUMENT, ... }. A special case is 1-path which contains only one node.

The feature vector in our case is the occurrence count of all the horizontal
and vertical paths extracted from the AST. To derive this for a given AST, we
first allocate a vector filled with 0’s and compute all (l,m)-leaf paths and n-
paths. For each individual path, we get the path’s identifier from a global lookup
table that holds all possible paths. This identifier is used to determine which of
the dimensions in the vector needs to be incremented. A feature vector for an
entire application can be generated in the same way by calculating the feature
vector over a graph that is a forest where each tree represents a method of the
application. Figure 3 shows an example of this procedure.
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In terms of performance, feature extraction is at most quadratic with respect
to the total number of nodes, n. For vertical feature extraction, the paths of
an AST are limited to a constant length, three, so the number of total paths to
traverse is O(n). For horizontal feature extraction, the number of pairs to iterate
over and count in the worst case, a single DIRECT or VIRTUAL node has O(n)
children (this case is highly unlikely), corresponds to O(n2) pairs.

4.2 Detection Techniques

We design three defense schemes: Symbol-Coverage for non-obfuscated applica-
tions, AST-Distance for applications with Level-1 obfuscation(observed in the
real-world), and AST-Coverage for applications with Level-2 obfuscation (not
observed in real-world to the best of our knowledge but possible).

Symbol-Coverage. If an attacker does not obfuscate, the symbol table in-
formation is available from the application byte-code. We consider the coverage
of symbol table information for every application A1, A2, ..., An by an uploaded
application A. If some application Ai is covered highly by A, then we consider
A a plagiarized version of Ai. The coverage of an application Ai by A is com-
puted as the number of classes and methods in Ai that also exist in A divided
by the total number of classes and methods in Ai. We only consider methods
as matching if they belong to classes that match. The application Ai with the
highest coverage is reported if the coverage exceeds some threshold.

AST-Distance. If an attacker obfuscates symbol table information (Level-
1), we use a defense based on feature vectors derived from method-level ASTs
(see Section 4.1). We use Euclidean distance due to its high accuracy in prelimi-
nary results where we tested various distance metrics. Let Ai be the application
with a feature vector that has the smallest distance to the feature vector of the
application A, then, Ai is reported if this distance is smaller than some threshold.

AST-Coverage. In our final algorithm, we aim to accurately detect plagia-
rism where applications were obfuscated with Level-2 obfuscation. We combine
the AST based feature vectors with the coverage approach. Specifically, once the
ASTs of each method of the applications in the market A1, A2, ..., An and the
uploaded application A are transformed into feature vectors, feature vectors of
each method of A1, A2, ..., An that are close to a feature vector of A are marked
as covered. The maximally covered application Ai is reported if the coverage is
greater than some threshold value.

5 Defense Evaluation

We evaluate the detection accuracy of our schemes using a dataset of 7,600
application binaries that we refer to as the Pseudo-Market.

5.1 Real-World Plagiarism Detection

We analyzed 13 instances2 of the HongTouTou [22] malware which plagiarized
highly-popular legitimate applications and relied on social engineering. The

2 We thank Tim Strazzere of Lookout Security for sharing the malware samples with us.



Plagiarizing Smartphone Applications 115

Table 2. Real-World Plagiarisms: List of plagiarized instances of legitimate appli-
cations that have occurred in the Android Market. We show the coverage of AST-
Coverage with (+) and without (-) the legitimate application in the market.

Application Characteristics AST-Coverage
Legitimate Title Malware Title Price Downloads + -

yxPlayer Flash Player Free ≥250,000 1.000 0.100
Steamy Window Screen Mist Free ≥250,000 1.000 0.118

Hello Kitty LWP Lite HelloKitty Livewallpaper Free ≥250,000 1.000 0.053
Wave Live Wallpaper Wave Livewallpaper Free 50,000-250,000 1.000 0.077

AndroMax Multi-Keyboard Shortcuts Free 50,000-250,000 1.000 0.100
Shamrock Live Wallpaper Clover Wallpapers Free 50,000-250,000 1.000 0.053

City at Night NightCity �0.99 50,000-250,000 1.000 0.077
Hi-Hiker Pro Hiker Free 50,000-250,000 1.000 0.100

Dandelion Livewallpaper TAT-LWP-Mod-Dandelion Free 10,000-50,000 1.000 0.006
Robo Defense Robo Defense �1.88 1,000-5,000 1.000 0.105

Sense Live Wallpaper Pro Beautiful Live Wallpaper �1.88 1,000-5,000 1.000 0.333
Yo Handcar: Off the Rails yohandcar Free 1,000-5,000 0.992 0.182

Roller Rev 99 Crazy Roller Coaster �2.99 100-500 1.000 0.182
Stickers Off Miniv Free 100-500 1.000 0.100

Snow Flurry Live Wallpaper LiveWinter �0.99 100-500 1.000 0.043

malware sends the device’s IMEI and IMSI numbers to a remote host [22] and
receives a set of search engine URLs and keywords that are then used to emulate
keyword searches and clicks committing various types of click-fraud.

Table 2 presents results for the AST-Coverage algorithm for HongTouTou in-
stances of plagiarism when compared with applications from our Pseudo-Market.
We found that all but one application resulted in full AST-Coverage. A full cov-
erage means that all the methods in an original application are covered by the
given plagiarized version. The only exception was “yohandcar” (malware) which
covered 99.2% of the methods of “Yo Handcar: Off the Rails” (goodware). We
manually verified the reverse-engineered code of both applications to confirm
that the malware was indeed mimicking the functionality of the legitimate ap-
plication. We also found that this malicious instance of HongTouTou not only
adds new methods to the original version, but also changes some existing meth-
ods in the original version, leading to the slight mismatch.

To show that our detection does not wrongly accuse applications of plagiarism,
we removed the legitimate versions of the malware samples from our Pseudo
Market and re-ran the AST-Coverage detection. As seen in Table 2, it correctly
reported a low coverage of the malware samples with the other applications.

5.2 Accuracy

We perform 500 benign and 500 plagiarized uploads. For a benign upload, we
select a random application, remove it from the Pseudo-Market, and then upload
it back. For a plagiarized upload, we select a random application, insert mali-
cious code into it, and upload the application back to the Pseudo-Market. Both
the original and the plagiarized versions are in the Pseudo-Market. We model
insertion of malicious code by selecting a random method from all the methods
of all applications, and inserting it into the application. By not inserting specific
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Fig. 4. (a) CDF of largest coverage of Symbol-Coverage; (b) CDF of smallest distance
of AST-Distance; (c) CDF of largest coverage of AST-Coverage; (d) ROC of the accu-
racy for all schemes; Symbol-Coverage changes from no obfuscation (case w/o asterisk)
to Level-1 obfuscation (case with asterisk); (e) ROC of accuracy AST-Distance; (f)
ROC of accuracy AST-Coverage

malicious code, but using random code, the results approximate the performance
in the presence of arbitrary types of malicious code.

We show CDFs of the coverage value for Symbol-Coverage in Figure 4(a),
the plagiarized uploads are not obfuscated. Symbol-Coverage distinguishes all
plagiarized applications from correct applications since all malicious uploads
have 1.0 coverage and no benign uploads had 1.0 coverage. Thus, there are no
false positives in this case.

Figures 4(b) and 4(c) show the CDF distance and coverage for the AST-
Distance and AST-Coverage, when the plagiarized uploads are not obfuscated.
The two schemes cannot perfectly distinguish benign uploads from plagiarized
uploads based on a single threshold value. In both cases, there is some fraction
of benign uploads that overlaps with plagiarized uploads. For AST-Distance,
the plagiarized upload distance to the original application is quite small (note
the log-scale of the x-axis) in relation to the closest distance of some benign
uploads, but there is a portion of benign applications that are close to some other
benign application in terms of AST-Distance. For AST-Coverage, the plagiarized
uploads have methods where the AST fingerprint is identical to many methods
of various applications due to shared libraries, and the methods are not always
matched to the methods of the original application that was plagiarized.

Each of our detection techniques can distinguish, with high accuracy, a mali-
cious versus benign upload given the coverage or distance of the uploaded appli-
cation to the next closest application in the market. The exact accuracy for each
is shown in the ROC curve of Figure 4(d) which is created by plotting TPR and
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FPR for each possible threshold value of Figures 4(a), 4(b), and 4(c). Although
AST-Distance and AST-Coverage have lower accuracy when no obfuscation is
used, these two schemes are more resilient to obfuscated uploads.

5.3 Obfuscation Resilience

We now evaluate the robustness of our schemes to Level-1 (replace method and
class names with random names) and Level-2 (add α random methods) obfus-
cation. While more advanced obfuscations have been proposed in the research
community [15, 16], their applicability to mobile applications remains unknown
due to the specific byte-code format and the very tight resource constraints.

Figure 4(d) shows results for no obfuscation and Level-1 obfuscation. Symbol-
Coverage’s performance degrades substantially when Level-1 obfuscation is used,
with an accuracy equivalent to guessing instead of a perfect accuracy. This is be-
cause the algorithm relies completely on values inside the symbol table which are
obfuscated under Level-1 obfuscation. The accuracy of AST-Distance and AST-
Coverage remain the same since they do not use any symbol table information.
AST-Distance is the most effective under Level-1 obfuscation.

Figures 4(e) and 4(f) show the results of AST-Distance and AST-Coverage
under Level-2 obfuscation. We increase α to show that the accuracy of AST-
Distance degrades significantly while the accuracy of AST-Coverage does not
change significantly. No threshold exists for AST-Distance that can distinguish
between the distance of randommethods added and the distance between a legiti-
mate application and all other applications in the Pseudo-Market. AST-Coverage
is robust to this problem because it relies on coverage of each application in the
Pseudo-Market instead of distance to each application, so a larger size does not
affect coverage of other applications as much.

5.4 Computational Feasibility

We evaluate the execution time of our schemes on a Quad-Core AMD
Opteron(tm) Processor 2380 machine of 2.50 GHz with 16 GB of RAM that
represents a typical commodity server used in data centers such as Amazon EC2.
We use synthetic datasets with sizes of 250K, 500K, 750K, 1000K, 1250K and
1500K applications, created by randomly selected applications from our dataset
of the real 7,600 binaries. For the Symbol-Coverage algorithm we store sym-
bols in a B+ tree of a MySQL database. For AST-Distance and AST-Coverage
we utilize BDD-trees [23] which is a data structure for performing k-nearest
neighbor searches on high-dimensional vectors. Figure 5 shows that our schemes
scales to millions of applications. The AST-Distance and AST-Coverage dif-
fer in performance because the AST-Coverage must search over many more
vectors.
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Fig. 5. (a) Preparation time for inserting and indexing the symbols inside the MySQL
database, (b) Query time to fetch all symbols from the database. Notice that after
indexing, the query time is less than 0.3 seconds per symbol

6 Related Work

Our work builds upon work on clone detection [24, 25] that determines the
existence of duplicated code fragments in large enterprise source code bases.
Deckard [24], a state-of-the-art tree-based approach, extracts characteristics vec-
tors from parse trees by counting q-level binary subtree patterns. Nguyen et
al. [21] improve upon this approach by efficiently capturing more structural
characteristics. Compared to these techniques, ours handles Dalvik byte-code.
Our feature extraction method is also different.

Our work is also related to algorithms comparing program versions, such as
a program and its obfuscated version [26–30]. These algorithms perform pro-
gram differencing at various levels: control flow graph level [26, 28], procedure
level [27], and statement level [29, 30]. These approaches require source-code,
whereas our approach works on byte-code. They are far more computationally
demanding than our AST based algorithms that are effectively accurate.

From a client-side defense perspective, there has been significant work in the
area of program analysis and access control to protect users against malicious
applications. Enck et al. [8] describe a framework to detect potentially malicious
applications based on permissions requested by Android applications. Nauman et
al. [9] propose Apex, a policy enforcement framework for Android that allows a
user to selectively grant permissions to applications as well as impose constraints
on the usage of resources. These solutions must run on the resource-constrained
mobile devices, and they rely on appropriate configuration by the user.

7 Conclusion

In this paper we focused on attacks that plagiarize popular smartphone appli-
cations to collect sensitive information or obtain monetary profit. We analyze
the meta-information of 158,000 applications from the Android Market and find
that 29.4% of the applications are more likely to be plagiarized. We proposed
three schemes that rely on method-level AST fingerprints to detect plagiarized
applications under different levels of obfuscation used by the attacker. Our anal-
ysis of 7,600 smartphone application binaries shows that our schemes detect all
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instances of plagiarism from a set of real-world malware incidents with 0.5% false
positives and scale to millions of applications using only commodity servers.
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Appendix: Feature Extraction and Detection Techniques

Algorithm 1 shows our feature extraction alogorithm which is performed on a
forest of abstract syntax trees (as shown in Figure 3c). The pairs of children of
VIRTUAL and DIRECT nodes are used to update the horizontal features, and
a depth first traversal is used to find all paths to update vertical features.

Algorithms 2, 3, and 4 show the details of our detection techniques. Symbol
Coverage, Algorithm 2, compares the coverage by the submitted application with
each application existing in the repository. AST Distance, Algorithm 3, compares
the feature vector distance of a submitted application with every application in
the repository. AST Coverage, Algorithm 4, compares the coverage of methods by
the submitted application with each application in the repository, and methods
are compared by the distance between their feature vectors. In each algorithm,
the closest matched algorithm in the repository is compared with a threshold to
determine whether the new application is a plagiarized version.

Algorithm 1. Feature Extraction
1: let G be a forest of the method ASTs
2: for each each node v in G do
3: traverse(v, {v})
4: for each VIRTUAL or DIRECT node v in

G do
5: for each each child pairs (u,w) of node

v do
6: update horizontal feature({u,w})
7:
8: procedure traverse(v, p) do
9: update vertical feature(p)
10: for each child u of node v do
11: traverse(u, p + {u})
12: end procedure

Algorithm 2. Symbol-Coverage:
1: Initialize numbers c1, c2, ..., cn, t1, t2, ..., tn

to zero
2: for all i ∈ {1, 2, ..., n} do
3: shared classes = Classes[A] ∩

Classes[Ai ]
4: ti := len(Classes[Ai ])
5: ci := len(shared classes)
6: if len(shared classes) > 0 then
7: for all x ∈ shared classes do
8: shared methods =

Methods[A][x] ∩Methods[Ai][x]
9: ti := ti + len(Methods[Ai][x])
10: ci := ci + len(shared methods)
11: j := argmax(

ci
ti

)

12: p :=
cj
tj

13: if p > Threshold then
14: Alarm(Aj)

Algorithm 3. AST-Distance
1: x := Extract AST Feature Vector(A)
2: for all i ∈ {1, 2, ..., n} do
3: y := Extract AST Feature Vector(Ai)
4: di := ||x− y||
5: j := argmin(di)
6: d := dj

7: if d < Threshold then
8: Alarm(Aj)

Algorithm 4. AST-Coverage
1: Initialize set Z to be empty
2: for all i ∈ 1, 2, ...., n do
3: for all y ∈ Extract Methods(Ai) do
4: y := Extract AST Feature Vector(y)
5: Z := Z ∪ y
6: for all x ∈ Extract Methods(A) do
7: x := Extract AST Feature Vector(x)
8: Y := Nearest Neighbors(k, Z, x)
9: for all y ∈ Y do
10: Ai := Get Application(y)
11: Update Coverage Information(Ai,y)
12: for all i ∈ 1, 2, ..., n do
13: ci := Count Covered Methods(Ai)
14: ti := Number Of Methods(Ai)
15: j := argmax(

ci
ti

)

16: p :=
cj
tj

17: if p > Threshold then
18: Alarm(Aj)

http://www.cs.berkeley.edu/aiken/moss.html
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Mälardalen Real-Time Research Centre (MRTC)
Mälardalen University, Väster̊as, Sweden
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Abstract. Introducing security features in a system is not free and
brings along its costs and impacts. Considering this fact is essential in
the design of real-time embedded systems which have limited resources.
To ensure correct design of these systems, it is important to also take
into account impacts of security features on other non-functional re-
quirements, such as performance and energy consumption. Therefore, it
is necessary to perform trade-off analysis among non-functional require-
ments to establish balance among them. In this paper, we target the
timing requirements of real-time embedded systems, and introduce an
approach for choosing appropriate encryption algorithms at runtime, to
achieve satisfaction of timing requirements in an adaptive way, by mon-
itoring and keeping a log of their behaviors. The approach enables the
system to adopt a less or more time consuming (but presumably stronger)
encryption algorithm, based on the feedback on previous executions of
encryption processes. This is particularly important for systems with
high degree of complexity which are hard to analyze statistically.

Keywords: Security, real-time embedded systems, runtime adaptation,
trade-off.

1 Introduction

Security is gaining more and more attention in the design of embedded systems.
Embedded systems are nowadays everywhere. They are used in controlling sys-
tems of power plants, vehicular systems and medical devices, as well as, mobile
phones and music players. The operational environment, physical accessibility,
and mobility of embedded systems make them prone to certain types of attacks
which might be less relevant for ordinary computer systems, such as side channel
attacks, time and power analysis to determine security keys and algorithms [1].
Also, the increasing use of embedded devices as parts of networked and inter-
connected devices makes them prone to new types of security issues [2].

On the other hand, introducing security in embedded systems requires careful
considerations, trade-off analysis, and balance with other aspects such as per-
formance, power consumption, and so on. This is mainly due to the resource
constraints and limitations that these systems have. For example, choosing an
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encryption algorithm that performs heavy computations, requires lots of mem-
ory, and, as a result, consumes more energy, may impair the correct functionality
of the system and violate its specified requirements. This is basically because of
the fact that non-functional requirements, such as security, are not independent
and cannot be considered in isolation [3]. Therefore, it is important to under-
stand the impacts and consequences of designed security mechanisms on other
aspects of the systems.

In real-time embedded systems, where timing requirements are critical, choice
of security mechanisms is important in terms of satisfaction of timing require-
ments. One way to achieve this, is to find a security mechanism that fits and
matches the timing requirements of the system (e.g., by performing timing anal-
ysis), and then implement it [4]. This method leads to a static design in the
sense that a specific security mechanism, which is analyzed, and thus, known to
execute within its allowed time budget, is always used in each execution. How-
ever, this method may not be practical for systems with high complexity, which
are hardly analyzable or systems with unknown timing behaviors of their com-
ponents. Instead, for such systems, an adaptive approach to select appropriate
security mechanisms, based on the state of the system, can be used to adapt
its behavior at runtime and stay within the timing constraints. In this paper,
we introduce this approach, and describe its implementation for selecting ap-
propriate encryption algorithms at runtime (in terms of their timing behaviors)
in an adaptive way, using OSE real-time operating systems [5]. To this end, the
timing behavior of each execution of the encryption procedures is logged, and
used as feedback for selecting a more suitable encryption algorithm in the next
execution.

The rest of the paper is structured as follows. Section 2 describes the motiva-
tion and background of this work. In Section 3, we discuss the approach, describe
how the adaptation mechanism in the proposed approach works. Implementation
and experimental results are also explained in this section. Section 4, discusses
the context where the proposed approach can be more applicable and suit well.
In Section 5, related work is discussed, and finally in Section 6, conclusions are
drawn, and pointers to future directions of this work are provided.

2 Background and Motivation

Designing security for real-time embedded systems is a challenging task. This is
due to the fact that security features have impacts on other aspects of the sys-
tem, such as timing, and if these impacts are not identified, analyzed, or managed
properly, they can lead to violations of other non-functional requirements, and
thus failure of the system. While in small and simple systems timing and schedu-
lability analysis, covering security algorithms, can be done to ensure satisfaction
of timing requirements, when it comes to very complex systems, such static and
offline analyses might not be practical and feasible [6]. Even in cases where they
are feasible, the results of such analyses may be invalidated at run-time, due
to several factors such as transient loads, difference between the ideal execution
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environment (taken into account for analysis) and the actual one, which leads
to violation of the assumptions that are used to perform analysis [7].

Telecommunication systems are examples of systems with high complexity
that require massive execution capacity and have security requirements. Due to
the complexity of these systems, the main focus in their design is to be able
to handle massive connection requests and data loads that arrive in a bursty
and unpredictable fashion, than just trying to merely perform analysis of all
possible conditions in the system [8]. Therefore, it is important that such systems
are designed in an adaptive way, so that they can reconfigure themselves at
runtime to continue providing their services, although under different Quality-
of-Service (QoS) levels. Also, most of the real-time tasks in these systems have
soft deadlines. This means it is acceptable, in general, for the functionality of
the system, if some tasks complete their jobs within a reasonable margin after
their deadlines, and the result of a single deadline miss is not catastrophic.

OSE is a Real-Time Operating System (RTOS) developed by Enea [9], which
is used heavily in telecommunication systems, especially by Ericsson, from Radio
Network Controllers, and Radio Based Stations (RBS) to mobile devices. In this
paper, focusing on the needs of such systems that require runtime adaptation, an
approach is suggested to select encryption algorithms at runtime based on how
they behave in terms of their time constraints. To implement and evaluate the
approach, OSE is used as the base platform. It is an example of a RTOS which
is designed from scratch to provide the necessary determinism level required for
fault-tolerant real-time embedded systems with high availability, particularly in
telecommunication domain.

3 Approach

To design a system that can adapt itself and adjust the balance between its time
constraints and security level, the approach depicted in Figure 1 is suggested.

When an application needs to encrypt some data, it sends the data along with
the allowed execution time for the encryption procedure to the main encryption
process. Based on the received time constraint, this process will then try to
encrypt the data with an appropriate encryption algorithm, by invoking the cor-
responding process implementing that algorithm. This is done by first consulting
the log information generated by the monitor process plus a pre-defined table for
ranking of preferred encryption algorithms. An example of such a table is shown
in Table 1. The table is used to capture the preferences for different encryption
algorithms, but it has to be in descending order in terms of execution times. As
we will see, this is important for the correct behavior of the system. Comparison
of execution times for different encryption algorithms can be obtained from the
result of studies such as [10], which has performed performance measurements
of different encryption algorithms. This table is, therefore, filled by the user,
using the result of such studies. For each algorithm in the table, there is a pro-
cess that implements it (named in Figure 1 as ’process for encryption algorithm
1’. . . ’process for encryption algorithm n’).
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Fig. 1. Adaptive design of encryption algorithms

Table 1. Preferred encryption algorithms in descending order in terms of execution
times

Rank Encryption Algorithm

1 AES

2 3DES

3 DES

. . .

Then, when an appropriate encryption algorithm is decided (the following
section describes in detail how this is done), the main encryption process passes
the data to the process implementing that encryption algorithm to perform the
actual encryption of the data. The time taken from the point that the main
encryption process sends the plain data it has received from the application
process to one of the processes implementing an encryption algorithm, until
encrypted data is returned to the main encryption process by it, is sent as part
of the log information to the monitoring process. This log information will be
used as feedback in the next invocation of the main encryption process.

The assumption that is implicit in this design is that, when it is detected that
an executing encryption algorithm is exceeding its allowed time budget, it is
basically more costly to terminate it in the middle of the encryption procedure,
and restart encryption of the data with another encryption algorithm, than just
letting it finish its job, and instead use one with a lower execution time in the
next invocation of encryption procedures. This is why the encryption algorithms
in Table 1 need to be sorted according to their execution times. In this way,
the system first tries to encrypt all data with the algorithm at the top of the
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table. If it is observed that it cannot fulfill the specified time constraint, the
second ranked algorithm (which has shorter execution time) will be chosen for
encryption in the next invocation.

On the other hand, if an encryption algorithm completes its job sooner than
its specified time limit, the unused portion of its time budget is used to calculate
and determine whether it is feasible to go back to the previous higher ranked
algorithm for the next encryption job or not. Using this approach, the system
tries to adapt itself based on the feedback it receives regarding its timing behav-
ior. Therefore, when a burst of processing loads arrive, the system adapts itself
to this higher load, and when the processing load decreases, it can gradually
go back to using more time-consuming (and presumably more secure) encryp-
tion algorithms. This is, for example, very useful in telecommunication systems,
where lots of other services (than the one(s) using encryption) are active and
need to be responsive at the same time, where task pre-emption and context
switches increase dramatically and interfere with the encryption job.

3.1 Log Information and Adaptation Mechanism

The information that is logged by the monitor process has the following format:
Timestamp, Encryption algorithm, Time constraint, Actual execution time

An Example of the generated log information is shown in Table 2.

Table 2. Sample log information

10360, AES, 50, 90

11800, 3DES, 80, 70

14500, 3DES, 60, 70

21353, DES, 60, 10

22464, 3DES, 90, 40

23112, AES, 50, 50

28374, AES, 60, 58

The table shows that the system has first performed encryption using AES
algorithm, with a time constraint of 50 time units, but the actual execution time
has been 90; in other words, it has violated its time constraint. Therefore, in
the next execution, 3DES is automatically chosen for encryption (as it is the
first lower ranked algorithm under AES in Table 1), which has finished its job
in 70 time units while having 80 as its time constraint. Hence, no change in the
encryption algorithm is observed and the same algorithm (3DES) is used for
the third execution as well. The fifth and sixth rows in Table 2 (which represent
the fifth and sixth executions) show that the system has chosen to apply a
higher ranked encryption algorithm (fourth to fifth: DES->3DES, and fifth to
sixth: 3DES->AES).

In the log that is kept in memory from the log information generated above by
the monitoring process, if an encryption algorithm is again selected for the next
invocation, its latest log record will replace the previous one. In other words,
for each two consequent log records for a certain encryption algorithm, only
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the most recent one is kept. This is done to only keep the information that is
necessary, which also leads to having only log information indicating changes of
encryption algorithms being stored. Table 3, shows what is actually necessary
from the generated log information shown in Table 2, for making adaptation
decisions.

Table 3. Necessary portion of log information for making adaptation decisions

10360, AES, 50, 90

14500, 3DES, 60, 70

21353, DES, 60, 10

22464, 3DES, 90, 40

28374, AES, 60, 58

Considering the last row from the log as:

ts, alg, t, e
(ts: timestamp, alg: encryption algorithm, t: time constraint, e: actual execution time)

the decision that the system should adopt a lower ranked algorithm is made
using the following formula:

(i) e > t⇒ move down in the encryption algorithms table and select the next
algorithm with a lower rank.

Also, considering the two log records described as follows:

ts(l), alg(l), t(l), e(l) : representing the last log record
ts(h), alg(h), t(h), e(h) : representing the log record for the first encryption
algorithm with a higher rank that was used before the last log record

the decision to adopt a higher ranked algorithm is made using the following
formula:

(ii) e(l) < t(l) ∧ t(l) − e(l) > abs(e(h) − t(h)) ⇒ move up in the encryption
algorithms table and select the previous higher ranked algorithm.

For example, in Table 3, applying formula (i) on row 1 (i.e., 90>50) shows that
AES has taken more time than it was allowed to; therefore, a lower ranked
algorithm (3DES) is used for the next invocation. However, for row 4, and the
higher ranked algorithm just before it, which is AES at row 1, formula (ii) holds
(i.e., 90-40>abs(90-50)); therefore, at the next invocation (corresponding to row
5), AES algorithm was used again.

3.2 Implementation Details

The implementation of the approach is done on OSE real-time operating systems
[5]. The OSE edition that is used is OSE Soft Kernel (OSE SFK), which is a
simulation of the actual environment to be downloaded to the target embedded
hardware, and is possible to run on a host machine (e.g., on Windows or Linux).
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The execution unit in OSE corresponding to a real-time task is called process.
For all the processes depicted in Figure 1, an OSE process is implemented. OSE
offers two types of processes: static and dynamic. Static processes are created
upon system startup, cannot be terminated, and last as long as the system is up
and running. On the other hand, dynamic processes can be created and killed on
the fly by another process using OSE APIs. Main application, main encryption
process, and monitoring process, are created as static processes. Each encryption
algorithm is implemented as dynamic processes, which are, in turn, created by
the main encryption process at runtime as needed. This is just a design choice to
reduce the number of active processes in the system, as encryption algorithms can
also be well created as static processes, in which case, the overhead of creating
them for each invocation will be reduced, while increasing the total scheduling
overhead and memory usage of the system.

An interesting feature of OSE is offering the concept of load module. Load
modules are relocatable program units that can be loaded into a running system
and dynamically bound to that system. A loadable module can be uploaded,
rebuilt, and quickly downloaded while the remainder of the system continues
to run [5]. A load module can be considered similar to Windows .exe or .dll
files. Once installed, the program (consisting of one or more processes) that they
contain, can be created and started. In the case of our system, this means that
security designers can add new encryption algorithms to the system dynamically
or update them on the fly, while the system is active and running. Such a feature
is very important in high-availability systems, where updates and upgrades (e.g.,
patching security issues) should affect the up-time of the system to the least
degree possible.

Also, the direct and asynchronous message passing mechanism in OSE, makes
this real-time operating system a great choice for use in distributed systems. This
further facilitates the scalability of systems that are built on OSE. Data between
processes are passed as signals using three basic OSE APIs for signal passing:
send, receive, and alloc (to create signals containing data). The Inter-Process
Communication protocol (IPC) used in OSE, makes the location of processes
transparent to the user; meaning that no matter whether two processes are lo-
cated on the same board or on different ones, the communication between them
is done using the same set of APIs and code. Using this feature, the proposed ap-
proach is implemented without the need to use shared memory among processes.
The communication between processes is implemented using the three above-
mentioned APIs. This brings along the possibility to deploy the processes shown
in Figure 1 on different processors and boards without affecting the generality
of the approach, which is important for highly-distributed real-time embedded
systems such as telecommunication systems.

Using the aforementioned features, several signals have been defined for
synchronization, and to pass data between processes. For example, signal HIS-
TORY INFO REQUEST is defined which is sent from the main encryption pro-
cess to the monitoring process to request log information. In case of receiving
this signal, the monitoring process sends last log record, and the log record for
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the first encryption algorithm with a higher rank, used before the last record,
to the main encryption process using HISTORY INFO REPLY signal. Using
this signaling mechanism also allows to deploy processes on different nodes if
needed. This is possible since the necessary information to make adaptation de-
cisions such as the time it takes to encrypt is passed between processes as part
of the signals, making the actual location of processes in different nodes unim-
portant and transparent for the approach to work. The rank table for encryption
algorithms is actually implemented using enumerations in C/C++ in the main
encryption process.

3.3 Evaluation

To test the behavior of the system, a tool called CPU Killer [11] was used to cre-
ate desired percentage of CPU loads at desired times. Moreover, Optima, which
is a debugging, profiling, and monitoring tool developed by Enea for OSE, was
also used to monitor and observe, in the form of graphs and tables, CPU usage
levels at different system ticks from the startup of OSE. The system was run two
times: once without having adaptation and the second time using adaptation.
At each time, CPU loads of 10%, 50%, 70%, and then back to 50%, and 10%
were applied. The results are shown in Figure 2.

The columns for each log record identify: system time (ticks), encryption
algorithm, time constraint (ticks), and actual execution time (ticks). As men-
tioned in the previous section, an enumeration in the form of ”enum algorithms
{ AES=1, THREEDES=2, DES=3 };” was used to represent the information
of Table 1 in the code. The logs are decorated here with additional marks to
facilitate explanation and understanding of the results.

In case I, where no adaptation was applied, AES (as number 1 in the second
column) algorithm is constantly used for encryption. This is because the goal is
to provide the maximum level of security, and therefore, the system is designed to
prefer and choose the topmost encryption algorithm (whenever possible) from
the table, which represents the strongest one. The system was started while
applying 10% CPU load, and as can be seen from the figure, encryption is done
within its time constraint of 300 and no violation is observed. However, when
CPU load is increased to 50%, encryption starts violating its time constraint.
Violations are marked with * mark in the figure. In case of the first violation, it
can be seen that encryption was completed in 305 ticks while the time constraint
is 300 ticks. Violations get worse (with more time margins) at 70% CPU load. It
is only after going back to 10% CPU load, that encryption can meet its constraint
again.

In the second case (II), where adaptation was used, it can be easily understood
at the first sight that the number of violations have decreased. The first violation
occurs when the CPU load is set to 50%, however, the system adapts itself to
this new load and uses 3DES (as number 2 in the second column), which helps
the system to perform within its time constraint again. When CPU load is set to
70%, violations are again observed. Therefore, the system adapts itself by using
DES (as number 3 in the second column) instead of 3DES, to stay within the
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Fig. 2. Results of running the system with and without adaptation

time constraint. Even using DES, the system still fails to meet its constraint,
however, within a smaller time margin. In spite of violations, since no lower rank
algorithm than DES was defined in this experiment, the system keeps using it
as the last possible choice. When the CPU load is reduced back to 50%, using
the two formulas described at the beginning of the section, the system realizes
that it can go back to using a higher ranked algorithm (3DES in this case; hence
number 2 is again observed in the second column as the used algorithm) without
causing any violations. Finally, by reducing the CPU load further to 10%, the
systems goes back to using AES again.

Two rows are marked with A (at time 2111 and 5950) to show anomaly in
the results. The first one which shows a violation for AES algorithm under 10%
load, while previous rows show that it can meet its constraint under this load.
This can be due to some background services doing some work in the system at
that point, which has affected AES to perform encryption as before, and thus,
resulted in a violation. Or, it can be because of a relatively slow movement of the
slider in the CPU Killer application, which is used to raise the CPU load to 50%
manually, and thus resulting in the system working in a CPU load between 10%
and 50% for a short while at that moment. This can also be the reason for the
anomaly observed in the next row marked with A (at time 5950). In this case,
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this row shows that DES has managed to complete within its time constraint
under 70% CPU load. While, it could not perform so in the previous rows related
to this algorithm (having number 3 in the second column). This can again be
because of the relatively gradual decrease of the CPU load from 70% to 50%,
causing the system to work at some CPU load in between.

Also another interesting observation from this result is that, as the conse-
quence of using adaption, more encryption jobs have been performed in the
second case (II), under a shorter period of time.

4 Discussion

Our suggested approach and the way we implemented it, gives this flexibility
to have different time constraints for each invocation of encryption procedures.
This may not, however, be needed in all systems, and only a fixed value (e.g.,
originating from a system level requirement) might seem to be enough for many
situations, but other systems can well benefit from this flexibility.

The whole adaptation mechanism can also be used as an option; in the sense
that, if a system detects certain patterns in CPU load variations and violation
of timing constraints in the applied encryption algorithm, it can turn on adap-
tation mechanism and let the system decide which encryption algorithm to use.
Moreover, use of the suggested adaptation mechanism may be most beneficial
when there are many requests for encryption and frequency of CPU load changes
are such that they make the overhead of adaptation mechanism acceptable. On
the other hand, if there are only a few encryption requests or there are not big
changes in CPU load (or the range of changes is very small and known before-
hand), using a fixed encryption algorithm may be more desirable (to remove the
overhead cost of adaptation).

The security level of the system, originating from the choice of encryption
algorithms, is actually determined by the list of encryption algorithms that de-
signers choose to include in the described encryption algorithms table. So, for
example, if for a system only AES and 3DES are acceptable, the table can be
constructed using only these two algorithms. This also defines what is the range
of strongest and weakest encryption algorithms that the system may be using at
any moment. Moreover, while we only focused on the algorithm itself, and did
not discuss key length or block length explicitly, these factors (even the number
of rounds), where applicable, can easily be taken into account using the table.
For example, instead of just having AES, we can put AES256 and AES128 as
items in the table, to bring into picture the role of key length, and the system
will choose each when decided appropriate.

Providing adaptations on encryption algorithms, also automatically leads to
some sort of security through obscurity (note the famous quote of ”security
through obscurity is not security”) [12,13]. One interesting topic that we leave
as a future direction of this work to be investigated, is that whether adaptive
mechanisms, as the one described here, can lead to weaknesses in the system and
facilitate the job of attackers. For instance, issues such as this can be analyzed
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more throughly that if attackers get to know the details of adaptation mecha-
nisms, they might force the system into adopting the lowest ranked (weakest)
encryption algorithm by creating CPU loads, and making it easier for themselves
to break into the system.

5 Related Work

Designing security features for embedded systems has its unique challenges and
requires specific engineering methods and considerations. These issues have been
the subject of many studies such as [14,1,2]. [14] and [1], focus on these unique
challenges of security in embedded systems in general, and discuss them under
the processing gap, battery gap, flexibility, tamper resistance, assurance gap, and
cost titles. [14] also provides workload analysis of SSL protocol, and examples
for energy consumption of different ciphers, to discuss and illustrate the impacts
of security features in embedded systems. The vision for security engineering of
embedded systems in the scope of a project is described in [2].

[15] and [10] are examples of works that study the impacts of security mecha-
nisms on specific aspects of a system. Measurement and comparison of memory
usage and energy consumption of different encryption algorithms on two differ-
ent sensor nodes (MicaZ and TelosB motes) are performed and discussed in [15],
and [10] offers performance and timing comparisons of encryption algorithms on
two Pentium machines. The approach we proposed in this paper, relies on the
results from the performance and timing comparisons of encryption algorithms
as provided in the aforementioned study.

In this paper, an adaptive way to deal with the timing costs and requirements
on security mechanisms was introduced. It should, however, be mentioned that
there are other ways for taking into account these timing costs, which might
suit very well other types of systems than discussed here. In systems with less
complexity which are analyzable, a static and non-adaptive structure can be
designed (i.e., a fixed set of security features will be used all the time e.g.,
to encrypt data). The idea we proposed in [4] is basically an example of such
approach and systems.

The use of adaptive approaches and feedback mechanism for better CPU uti-
lization and task scheduling in dynamic systems, where execution times of tasks
can change a lot at runtime, has also been the topic of many studies in the real-
time systems domain, such as [16]. One of the interesting works in the area of
security for real-time embedded systems which uses an adaptive method is the
study done in [17]. One difference between our work and [17] is that, there, the
focus is on a set of periodic tasks with known real-time parameters, whereas,
our main target is complex systems consisting of periodic, sporadic and aperi-
odic tasks. Therefore, the analysis and formulas they offered in that work may
not be applicable or need to be extended to support the type of systems we
discussed here. Also, they consider the security level of the system as a QoS
value explicitly, while in this paper, it is considered implicitly and left to the
user through the use of a sorted table for encryption algorithms. Moreover, the
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main adaptation component of the system in that work is key length, while in
our work it is the encryption algorithms that are adaptively replaced, and can
easily include key length or any other relevant parameters as well. One of the
interesting and close studies to our work is [18]. They basically use a similar
type of adaptation mechanism as ours. However, the main focus in this work
is on client-server scenarios using a database, and to manage performance of
transactions. Also, security level adjustment in this work is done periodically
using a security manager component, while in our method, adaptation mech-
anism executes per request and is not active when application has no request
for encryption. Moreover, in that work, while security level switch is occurring,
it can lead to use of an inappropriate encryption method by a client, which is
solved by rejecting it, through passing several acknowledgment messages and
repeating the process. Therefore, synchronization and message loss due of out
of order arrival of messages are problematic for the security manager, which is
handled by re-sending of data and applying other means.

As another approach for managing security in real-time systems, Tao Xie and
Xiao Qin, has basically incorporated timing management of security mechanisms
as part of the scheduling policy and developed a security-aware scheduler in [19].

6 Conclusion and Future Work

In this paper, we discussed security, as a non-functional requirement, in the
design of real-time embedded systems, and particularly, how the choice of en-
cryption algorithms, can affect timing requirements in these systems. An adap-
tive approach for selection of encryption algorithms was suggested for systems
which need to balance their services at runtime in order to achieve their time
constraints. It was shown how the approach can help the system to react to dif-
ferent processing loads and perform its encryption procedures within the defined
time constraints. While, OSE RTOS was used as the base platform for implemen-
tation of the approach, there is nothing that stops it from being implemented
on other platforms.

In the suggested approach here, a gradual increase or decrease of the rank
of encryption algorithms was used. In other words, in each adaptation step,
the system chooses either the next higher or lower ranked algorithm. As a future
work, it can be evaluated how the approach would perform, if in each adaptation,
the lowest or highest ranked algorithm was selected instead. For example, if it
is observed that the system completes its encryption job earlier than its time
constraint, it jumps to the top of the rank table and chooses the highest ranked
algorithm for the next invocation. It would be interesting to study for which
systems/situations, each of these methods work better and categorize systems
accordingly. Calculating the overhead of adaptation mechanisms and optimizing
them is also left as a future study.

Moreover, in this work we focused on complex systems with not much infor-
mation about timing properties of each individual task in the system to perform
analysis. This situation was observed in the design of a telecommunication sub-
system during our work in the CHESS project [20]. Accordingly, the approach
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that is suggested in this paper tries to improve satisfaction of timing constraints
of the system by keeping a history of the timing behavior of the system. There
is room to improve the suggested adaptation mechanism by taking into account
more information about the system than was used here, and also more knowledge
about the task that requires encryption when available.

Another direction of this work is to introduce other factors besides time for
performing adaptations. These factors may include energy consumption, memory
usage, and even situations where a system is under attack. Moreover, it was
discussed whether and how adaptation mechanisms might actually help attackers
to break more easily into a system. This issue can serve as an interesting topic
for more careful investigations.
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Abstract. Business applications are complex artefacts implementing custom 
business logic. While much research effort has been put in the identification of 
technical vulnerabilities (such as buffer overflows and SQL injections), applica-
tion-level logic vulnerabilities have drawn relatively limited attention, thus 
putting the application’s mission at risk. In this paper, we design, implement, 
and evaluate a novel heuristic application-independent framework, which com-
bines static and dynamic analysis, input vector, and information extraction 
analysis, along with a fuzzy logic system, so as to detect and assert the criticali-
ty of application-level logic vulnerabilities in Java stand-alone GUI  
applications. 

Keywords: Error Detection, Vulnerability, Application Logic, GUI. 

1 Introduction 

Vulnerability management in information systems mainly concerns the individual 
standard components and, usually, does not refer to the business applications per se. 
The security of the application logic itself (which effectively realizes the business 
logic programmed inside) is vastly unexplored due to the diverse and customized 
nature of the business logic and developer intentions. We define as “Application Log-
ic Vulnerability” (hereafter “Logic Vulnerability”, “LV”), the flaw present in the faul-
ty implementation of the business logic within the application code. An example from 
[9]: An online store web application allows users to use coupons to obtain a one-time-
discount-per-coupon on certain items; a faulty implementation can lead to use the 
same coupon multiple times, eventually zeroing the price. 

In this paper we introduce APP_LogGIC, a novel framework for the identification 
and criticality assessment of application LVs in standalone Java applications with a 
GUI. Our prototype-level implementation analyzes application code and introduces a 
new way of vulnerability assessment. It is based on extensive code analysis from 
multiple viewpoints, which feed a mathematical fuzzy logic system calculating the 
Vulnerability and Severity of possible LVs, close to a security auditor analysis. 

In section 2 we briefly review existing work. In section 3 we present our idea. Sec-
tion 4 describes the fuzzy LV-reporting module, whereas section 5 details our expe-
riments. Finally, we conclude and discuss future work in section 6. 
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At a glance, the paper contributes the following: 

(a) A new method (based on [9]), capable of detecting LVs in GUI applications, 
through the use of dynamic and static analysis, along with the use of information 
gathered through a suggested Information Extraction Method (IEM), with almost 
zero false positives. 

(b) A new IEM, which makes use of an existing effective Input Vector Analysis me-
thod, an Abstract Syntax Tree analysis method, and a code-branching analysis me-
thod. It provides extensive structural information for any Application Under Test 
(AUT).  

(c) In collaboration with the Java PathFinder [11] group, we extended the functionali-
ty of its JPF-AWT component used and fixed a number of bugs of this tool. 

(d) Finally, we propose and implement a method for asserting and evaluating possible 
LVs (“APP_LogGIC”), by using a Fuzzy Logic system, which computes and 
graphically represents the criticality of each possible LV. [13]. 

2 Related Work 

In this section, we briefly summarize a few pieces of related work. Researchers in [1], 
[2], [4] and [5] focus on detecting code vulnerabilities but fail to include any method 
for detecting LVs.  

Researchers in [9] use the ΜΙΤ's Daikon dynamic analysis tool to infer a simple set 
of behavioral specifications for a web application. Then, they filter the learned speci-
fications to reduce false positives and use NASA's JavaPathFinder (JPF) tool [11] for 
model checking over symbolic input, in order to identify program paths that, under 
specific conditions, may indicate the presence of a certain type of web application 
logic flaws.  

The authors in [2] propose an approach for penetration testing using: (a) static 
analysis for identifying possible input vectors to an application, and (b) dynamic 
analysis for automatic analysis the output of the AUT.  

3 The APP_LogGIC Framework 

APP_LogGIC framework analyzes applications with no finite-state execution (i.e., 
with potentially indefinite scenarios of actions). It flags possible LVs by using generic 
characteristics of their behavior and location in code. The more suspicious a point of 
source code is, the higher it scores in the Fuzzy Logic system [13]. 

The overall APP_LogGIC architecture is depicted in Fig. 1. More specifically: 

(a) The Invariant-Based Method (IBM) is based on [9] and uses Daikon dynamic 
analysis to extract possible source code rules that describe the business logic of 
an AUT. It, also, uses JPF to statically analyze the Daikon results. 

(b) The Information Extraction Method is a set of IEMs, i.e., a Decision Analysis 
Method that analyzes branches in source code, a Javac Abstract Syntax Tree 
(AST) Parser that focuses on the relationships and structure of the AUT’s code, 
and an Input Vector method tracking AUT data entry points. 
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Fig. 1. The APP_LogGIC architecture 

(c) The Input Vector Analysis Method extends work in [2] and provides informa-
tion for the detection of possible LVs due to incomplete checks on data. 

(d) APP_LogGIC combines the information selected from the previous methods, 
and assesses the criticality of all suspicious sources using Fuzzy Logic. 

The analysis of GUI applications is done with the use of the referred heuristic me-
chanisms and a fuzzy logic system. It aims at determining the criticality and impact of 
the detected key-points in the source code. This is a novel approach, as it has not been 
applied so far to stand-alone applications, let alone inter-platform Java applications 
with a GUI. 

The functional parts of the APP_LogGIC architecture are presented in the sequel. 

3.1 The Invariant-Based Analysis Method (IBM) 

The IBM combines Dynamic and Static Analysis; however, our Static Analysis ap-
proach does not use symbolic execution [9], but scripted, looped sequences of actions 
feeding the application, as well as a listener recording the state of data variables. 
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Dynamic Analysis 
This step monitors the execution of the AUT with input data. By using the Daikon 
tool [8], we extract a set of traces representing expected application behavior based on 
various sets of inputs, named logic invariants (i.e., logic rules that hold true during all 
possible execution states and describe the relationships and restrictions enforced on 
the application variables). Since these invariants hold throughout the execution of the 
method they refer to, they eventually provide a window towards detecting the logic. 

 

Fig. 2. Invariant produced by Daikon Dynamic Analysis 

In Fig. 2, the line initComponents():::EXIT shows that the invariant <identity> 
must be equal to “-1”, holding as a rule whenever the LoginFrame.initComponents() 
method finishes its execution. APP_LogGIC, uses information extracted with IEM to 
filter all such invariants and focus on those that hold LVs (Fig. 1, Blue Method). 

APP_LogGIC adopts the approach in [9], by focusing on the invariants for the “IF” 
branches checks, lying inside the AUT code; the IBM uses the results from the Deci-
sion Analysis and categorizes the produced invariants by their restriction in branch 
decisions. 

Static Analysis 
Each application function is a sum of sequential instruction executions (execution 
path). This step uses scripted GUI program executions, so as to produce the execution 
paths that are necessary to cover the AUT’s functionality. The analyst should ensure 
that Daikon fully covers the AUT possible execution paths, otherwise the AUT logic 
rules may not be correctly extracted.  

These paths, together with the recording of all paths' variables, serve as clues for 
the detection of LVs. In order to statically analyze AUTs, we use the JPF tool [14] 
and a VarRecorder listener. To make JPF work with GUI applications, we extended 
its JPF-AWT component by fixing bugs in its (a) Swing part and (b) native code ex-
ecution; changes were incorporated in the official JPF-AWT package [11]. Fig. 3 
depicts logging variable states and execution paths. 

 

Fig. 3. Execution Path with variable states and variable parsing steps 

Detecting Potential Logic Vulnerabilities 
We detect the possible LVs with the IBM as follows: APP_LogGIC detects points in 
static analysis execution paths, where a variable described in an invariant rule is used. 
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Then, it records whether it enforces or violates the invariant produced by dynamic 
analysis. Next, we check the rest of the execution paths produced by the application, 
in search of paths that violate the same rule. For example; back to the Identity inva-
riant case (Fig. 3), the current execution path violates the rule identity == “-1”, as the 
path finishes with Identity having the value “1”. If another version of the same execu-
tion path exists, which finishes with a “-1” state, then the Identity might be a LV. 

Information Extraction Method (IEM) 
The IEM uses information from the IBM, the Javac compiler Abstract Syntax Tree 
(AST), and the entry points of input vectors, in order to refine data related to possible 
LVs. The outputs are fed back to the IBM for enhancing the filtering of the invariant 
rules and JPF execution paths (point “C”, Fig. 1), thus enhancing the overall quality 
of the data related to the possible LVs. The three steps of it are: 1) Branches and Re-
strictions Analysis: Decisions in an execution path are, generally, implemented by two 
means: a branch (selection point) and a set of restrictions (a variable or constant, with 
a specific value within the branch). These provide sufficient information for the detec-
tion of LVs, as the vulnerability is expressed as an erroneous branch decision during 
execution. Thus, we developed a method that extracts the AUT logic from source 
code branch restrictions; 2) Information Extraction from Javac AST: the Javac compi-
ler is used to provide structural info for the AUT, which is later fed into the Fuzzy 
Logic. The code is represented as a tree, with variables or values as leafs and instruc-
tion as nodes. As all the work is done by the Javac, the APP_LogGIC’s execution is 
kept fast, no matter the size of the AUT; 3) Analysis of Input Vectors (Entry Points): 
The Input Vector Analysis component monitors the checks enforced on source code 
variables that hold data from input vectors. It performs structural (REGEX) checks 
and analyzes: a) the tainted variable that holds the initial value passed from a vector; 
b) the structure of the data inside a tainted variable (but not their actual content); and 
c) occasions where user input is never checked or sanitized in any way. Finally, the 
results are combined with information from the IEM component and a certain subset 
of LVs is detected: the LVs that exist due to insufficient checks on input vector data. 

4 Fuzzy Logic System 

We use a scalable Fuzzy Logic system [13] in order to rank possible LVs according to 
their severity and place in code. This ranking system, combined with our improved 
code analysis, provides a robust way of identifying yet-unknown LVs. We use two 5-
grade Likert scales (1 for low, 5 for max, Table 1), for ranking the Vulnerability and 
the Severity of a specific code point of interest (Severity: “How severe the impact will 
be if a LV does exist at the specific point in source code”, Vulnerability: “How high is 
the possibility for a specific, critical point inside the source code to contain a LV”). 

According to the position of each restriction in the code, a severity value is as-
signed in each variable involved in the restrictions found - i.e., the Basic Severity 
takes into account whether a variable acts as a restriction or a sink [12] (i.e. data 
store) inside the AUT code. Finally, Extended Severity and Final Severity are  
calculated. 
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Table 1. Criteria for calculating Basic, Extended, and Final Severity 

STEP 1: CALCULATE BASIC SEVERITY STEP 2: CALCULATE EXTENDED SEVERITY 

Criterion 1: Random variable 
Variable used as a restriction on an “IF” 
branch twice or more 

Criterion 2: Variable used as a sink for data 
originated from input vectors 

Variable used as a sink AND as a restriction 
on an “IF” or “switch” branch 

Criterion 3: Variable used as a restriction 
on an “IF” branch 

STEP 3: REGISTER FINAL SEVERITY 

Criterion 4: Variable used as a restriction 
on an “switch” branch 

 

The other factor under consideration is the Vulnerability, i.e., if a branch variable is 
never checked or sanitized, its Vulnerability level is set to 5 (max). All information 
gathered along with the newly assigned Vulnerability and Severity ranks are fed to the 
Fuzzy Logic, so as to qualitatively estimate the criticality of the detected possible 
LVs. We configured the system to use linguistic variables and rules of the IF-THEN 
type (Fig. 4). Based on the Severity and Vulnerability scoring of every possible 
source code point that might be a LV, the Criticality of each detection is plotted sepa-
rately, thus producing a numerical and a fuzzy result. The former result is calculated 
by the Center of Gravity technique1 via its Severity and Criticality values (Fig. 5). 

 
  

Fig. 4. Example of a Fuzzy Logic rule 

 

Fig. 5. APP_LogGIC output sample: Criticality of a possible logic vulnerability 

5 Implementation 

We developed a sample Java GUI application testbed (“LogicBomb”), so as to avoid 
the technical limitations and incompatibilities of external tools (e.g. JPF’s limited 
static analysis in Swing GUIs) and also to demonstrate our method capabilities. 

                                                           
1 For further information on the rule ranking system please refer to [7]. 

RULE 1: 
IF Severity IS small AND Vulnerability IS trifle THEN Criticality IS 
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LogicBomb contains five LVs found in real world applications. Their types are de-
scribed in the first three of the CCWAPSS scale criteria [13]. Three of the LVs intro-
duced are insufficient checks on Input Vector sinks and one is an invariant violation 
that manifests due to erroneous transfer of data between variables in source code (a 
common error, using global variables and failing to set and clear their contents cor-
rectly). Notably, the fifth vulnerability - an LV generated by an erroneous sink usage - 
was not coded deliberately, but was also successfully detected.  

APP_LogGIC framework was tested on an Intel Core 2 Duo E6550 PC (2.33 Ghz, 
2GB RAM). Table 2 shows the execution times for the tools used (including the 
APP_LogGIC analysis). The Dynamic Analysis step includes the time needed for the 
user to manually execute AU (actual Daikon processing took ~4 sec). 

Back to the Identity example, the IBM found the LV due to the violation of the in-
variant Identity == “-1” and correctly assigned with a Vulnerability value of 5 and a 
Severity value of 4 for the Fuzzy Logic (Fig. 5). APP_LogGIC dynamically detected 
all vulnerabilities and assigned fuzzy logic values accordingly. 

Table 2. Execution Times 

Type of execution Time (sec) 
Dynamic Analysis 26.519 

Static Analysis (JPF) 6.266 

APP_LogGIC analysis 1.172 

5.1 Limitations 

The current version of the framework, though able to detect numerous vulnerabilities, 
suffers by a number of limitations. First, the types of vulnerabilities that can be detec-
ted are limited to those that appear in the control flow restrictions found inside an 
execution path. Also, due to inherent incompatibilities, the current version of 
APP_LogGIC does not support the Java language “switch” branch type. The Daikon 
tool does not support the creation of invariants for loops (“While” and “For” const-
ructs). Besides that, AUT execution should cover (ideally) all possible paths. JPF can-
not analyze complex GUIs, due to the lack of support for the latest Swing classes. The 
use of scripted configuration files limits the amount of execution paths generated and, 
concurrently, the amount of information for checking the validity of invariants. Final-
ly, the Input Vector Analysis method cannot validate the sink data context. 

6 Conclusions and Further Research 

We implemented a novel framework that detects LVs and assesses their criticality in 
Java GUI applications with visual support. Although our test results stem from real-
world examples, third party applications testing is limited due to JPF.   
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We plan to extend our work to “While” and “For” constructs and to support more 
input methods. Finally, our approach cannot detect LVs based on the application va-
riables context (we plan to use semantic constructs such as XBRL [14] or OWL [15]).  
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on Keyed MapReduce

Huafei Zhu1 and Hong Xiao2

1 I2R, A∗STAR, Singapore
2 TEI, AFEU, Xi’An, China

Abstract. This paper studies trust mining in the framework of keyed
MapReduce and trust computing in the context of the Bayesian infer-
ences and makes the following two-fold contributions:

In the first fold, a general method for trust mining is introduced
and formalized in the context of keyed MapReduce functions. A keyed
MapReduce function is a classic MapReduce function associated with a
common reference keyword set so that a document is projected on the
specified common reference set rather the whole dictionary as that de-
fined in the classic MapReduce function. As a result, keyed MapReduce
functions allow one to define flexible trust mining procedures: a look-up
table which records the comments of neighbors can be constructed from
the inverted index of the keyed MapReduce function;

In the second fold, a new method for trust computing is introduced
and formalized in the context of maximum likelihood distribution. A
look-up table generated in the trust mining stage is now viewed as the
current state of the target server and then the maximum likelihood dis-
tribution over the look-up table is deduced. We show that the proposed
trust computing mechanism is optimal (an upper bound of trust values).

Keywords: Bayesian inference, Maximum likelihood distribution, keyed-
MapReduce, trust computing, trust mining.

1 Introduction

Trust is considering a pre-requisite for establishing relationship in peer networks.
Beth, Borcherding and Klein [4] and Yahalom, Klein and Beth [15] formally stud-
ied the trust computing in the context of direct and indirect trust values based
on transitive graphs. Since then tons of definitions on trust and trust computing
have been presented and analyzed, often in the association with reliability, ex-
pectancy, willingness, belief and predicate. The definition of trust is not unique
and may vary depending on the context and the purpose where it is used. A
commonly cited definition of trust is due to [9]: trust of a user in a server for a
service is a measurable belief of the user in the server behaving dependably for a
specified period within a specified context in the relation to the service.

G. Barthe, B. Livshits, and R. Scandariato (Eds.): ESSoS 2012, LNCS 7159, pp. 143–150, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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1.1 The Motivation Problem

The state-of-the-art trust computing procedures assume a trust mining proce-
dure is simply a query to a trust mining oracle O and a trust value is computed
from the response of that query [13,16,17,18,19]. The trust mining oracle O is
a probabilistic polynomial time Turing machine which assumes to be with the
following properties:

– extracting a user U ’s history information aux on the service X provided by
the sever S;

– b ← UO(S,X)(aux), where b ∈ [0, 1] by applying the Bayesian inference tech-
nique.

The computation of a prior distribution of transactions provided by the server
is an easy task in the continuous Bayesian system since it assumes that the
distribution of successful transactions is uniform in the interval [0,∞), i.e., the
prior distribution of E is the beta function

∫∞
0

pm(1 − p)n−mdp, where E is an
event that among n services m are successfully provided by a server S. While
such a trust mining oracle assumption is not a problem within the continuous
Bayesian system framework, it is a difficult task in the discrete Bayesian system
to calculate the probability Pr(E). This is because we do not know the discrete
distribution of successful transactions provided by the server S and no known
work addresses the trust mining problem in the context of the discrete Bayesian
system (to the best of our knowledge, trust mining problem is not addressed
in the references mentioned above), it is certainly welcome to investigate such
an interesting research problem from the point view of real-world application
scenarios.

1.2 This Work

This paper studies trust mining in the context of MapReduce and trust com-
puting in the context of maximum likelihood estimation within the framework
of discrete Bayesian systems. The computation of trust consists of the following
two steps

– a trust mining step: the task in the trust mining step is to collect informa-
tion (such as opinions, comments and recommendations distributed in the
networks) regarding a target server as much as possible and then tries to re-
trieve useful information from the collected information. That is, in the trust
mining step, we apply keyed map functions to collect information regarding
the target S who provides a service to users in the context of bulletin-board
model, where users are allowed to post anonymous comments on the server.
We then retrieve useful information from the collected information that will
be used to calculate trust values in the terms of keyed reduced functions;

– a trust computing step: the task in the trust computing phase is to calculate
Pr(E), where E denotes an event such that m out of the n (m ≤ n) transac-
tions behaving dependably for a specified period within a specified context
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in the relation to the successful services (or services with positive comments,
opinions and recommendations, etc) based on the collected information in
the trust mining step. We then predict its dependable service (a measurable
brief that the server provides a dependable service with probability p) in the
future transactions.

In the trust mining phase, auditors of service providers are introduced. An audi-
tor in our model is an insurance company who collects related information on the
insured service providers. The introduction of service auditors gives both cus-
tomers and service providers protections and a clear signal about which providers
are trustworthy enough to be insured since the auditor has expertise and capa-
bilities that the customers do not have. Since issuance premiums will reflect
both the known risks and the uncertainty in risks, service providers will have
an incentive to improve their risk management practices and to increase their
transparency to the auditors [12]. Also since auditors understand the threats
posed, know best practices, service quality and perform these checks through
well-defined interfaces to the services, we assume that the auditors maintain
readable and writable bulletin-board.

Individual comments posted in the bulletin-board is viewed as a document or
a record stored in the database. Note that in our model, the id of an user who
posts the comments on the service providers is anonymous but it is traceable
by an auditor. To retrieve the useful information from the database, a tool
called keyed MapReduce for trust mining introduced in [20] is applied. A keyed
MapReduce is a classic MapReduce algorithm associated with a public keyword
set (i.e., a common reference keyword set). A document/record is parsed as a
sequence of distinct keywords in the specified common reference keyword set. A
keyed MapReduce function is general in the sense that if the underlying keyword
set K selected by the MapReduce function is the whole dictionary D, then a
keyed MapReduce function is equivalent to the classic MapReduce function.
The keyed MapReduce function benefits us to select a common reference word
set K independent with a dictionary D and to avoid mining every word k ∈ D
in the stored documents d. As a result, the trust mining procedure defined over
the keyed MapReduce is much more efficient and flexible than that defined over
the classic MapReduce program. We retrieve the related information from which
a look-up table is established and predicate a posteriori trust score by means of
the maximum likelihood estimations based on the generated look-up table. The
posteriori probability p is computed from the following equation maxp Pr(P =
p∧E) = maxp Pr(P = p|E)Pr(E). We show that if the trust value is defined by
the maximum likelihood distribution of the generated look-up table, then our
trust computing mechanism defined is optimal.

Road-Map: The rest of this paper is organized as follows: in Section 2, tools for
trust mining is sketched; The details of trust mining on MapReduce is proposed
in Section 3. We describe the method for trust computing by means of maximum
likelihood distribution in Section 4 and conclude our work in Section 5.
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2 A Keyed MapReduce

MapReduce introduced by Dean and Ghemawat [6,7,8] is a programming model
automatically parallelized and executed on a large cluster of the commodity
machines. A MapReduce function consists of two parts: a map function and a
reduce function. A map function Map parses each document as words, and emits
a sequence of <documentID, word> pairs. The reduce function Reduce accepts all
pairs of a given word, sorts the corresponding document IDs and emits a <word,
list(documentID)> pair.

Let W be a universe of words , i.e., W ={0, 1}∗ and D ⊆W be a dictionary. A
document d is viewed as a set of distinct words in D in the standard MapReduce
program, i.e., d is viewed as a matrix M of form (documentj : wordj,1, . . . ,
wordj,αj , j = 1, . . . , l) below

⎛

⎜⎜
⎝

d1 : w1,1, . . . , w1,α1

d2 : w2,1, . . . , w2,α2

. . . . . . , . . . , . . .
dl : wl,1, . . . , wl,αl

⎞

⎟⎟
⎠

where (d1, . . . , dl) are records/comments/recommedations stored in the bulletin-
board of an auditor and wj,kj ∈ D for j = 1, . . . , l and kj = 1, . . . , αj .

2.1 A Keyed MapReduce Function

Let K = (k1, . . . , kλ) be a set of keywords associated with a MapReduce function
(we call K a common reference keyword set). We also assume that K ⊆ D. A
MapReduce function is called a keyed MapReduce if it projects a document d on
K. That is, a stored document d is viewed as a matrix M of form (documentj :
wordj,1, . . . , wordj,αj) for j = 1, . . . , l below

⎛

⎜
⎜
⎝

d1 : k1,1, . . . , k1,α1

d2 : k2,1, . . . , k2,α2

. . . . . . , . . . , . . .
dl : kl,1, . . . , kl,αl

⎞

⎟
⎟
⎠

where ki,j ∈ K.
Now a keyed reduce function Reduce with input matrix M is invoked to

generate inverted index M̂

⎛

⎜
⎜
⎝

k1 : d1,1, . . . , d1,β1

k2 : d2,1, . . . , d2,β2

. . . . . . , . . . ,
kλ : dn,1, . . . , dλ,βλ

⎞

⎟
⎟
⎠
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3 Trust Mining on MapReduce

We study trust mining on keyed MapReduce functions. To avoid leaking ids of
users who attempt to post comments on the public bulletin-board, we allow users
to access the public bulletin-board using shared random strings. We setup peer
database by the standard incentive-based solution for sharing useful comments
on the service provider.

3.1 Pseudonymous of Users

We assume that an auditor O holds a pair of public/secret keys (pkR, skR) a
CCA secure public key encryption scheme (say, the Cramer and Shoup’s public-
key encryption scheme [5] while a user is assumed to hold a shared τ -bit key
kU with O. To access the bulletin-board, we assume that U and O runs the
following authentication procedure

– O sends an authentication request together with a random string a ∈ {0, 1}λ
to a user U ;

– Upon receiving the request and a challenging string a, the user U computes
C= EpkR(kU , a) and sends C to O;

– O decrypts C to obtain (a, kU ) and checks that a is correct and that kU is
a valid shared key stored in O’s database.

Vaudenay [14] has shown that the authentication protocol sketched above is
secure in the presence of malicious adversaries assuming that the underlying
public-key encryption is CCA secure.

3.2 Trust Mining

A user in our model is encouraged to provide comments, opinions and recom-
mendations on a server S (in essence, it is an incentive-based mechanism. the
research on how to reward the user is out of the scope of this paper and thus
leaves this interesting problem to the research community). Such an opinion,
comment and recommendation is called a document or a record.

When U tries to deduce the trust relationship with the server S, it invokes
the auditor O who maintains the database of documents (in essence, the trust
computing model is viewed as a trust computing-as a servicemodel. Consequently,
our trust computing model can be applied to the recently well developed Cloud
Computing model as well). The trust mining procedure consists of the following
three steps:

1. In the first step, a user U invokes the auditor O to collect all documents
posted in the public bulletin-board

NSet =

⎛

⎜
⎝

d
(1)
1 . . . d

(1)
s1

. . . . . . . . .

d
(l)
1 . . . d

(l)
sl

⎞

⎟
⎠
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where d(i) =[d
(i)
1 , . . . , d

(i)
si ], a collection of records such that each record

posted in the bulletin board posted by user Ui;
2. Let K = (k1, . . . , kλ) be a set of publicly known keywords selected that is

maintained by keyed Map and keyed Reduce functions.
Let ∪li=1d

(i) = {d1, . . . , du}. The auditor O invokes a map function Map
with input {d1, . . . , du} to generate a matrix of form (record, key) below

M =

⎛

⎜
⎜
⎝

d1 : w1,1, . . . , w1,t1

d2 : w2,1, . . . , w2,t2

. . . . . . , . . . , . . .
du : wu,1, . . . , wu,tu

⎞

⎟
⎟
⎠

where wi,j ∈ K.
3. The auditor O now invokes a keyed reduce function Reduce with input ma-

trix M to generate inverted index M̂

k1 d1,1, d1,2, . . . , d1,v1
k2 d2,1, d2,2, . . . , d2,v2
. . . , . . . , . . . , . . . , . . .
kλ dλ,1, dλ,2, . . . , dλ,vλ

where {di,1, . . . , di,vi} ⊆ {d1, . . . , duk
}.

4 Trust Computing

In this section, a model for extracting auxiliary strings and computing trust
scores in peer networks is proposed. Our extracting model is based on the
Bayesian inference structure which in turn is instantiated by a look-up table
generated by keyed MapReduce programs.

Let E be an event that among n comments on the target server S,m comments
are positive (here we further assume that the keyword set divided into two sets:
a positive keyword set and a negative keyword set). Let k be random variable
defined over the set kM̂ (={k1, . . . , kv}). We now define a mapping φ: k ∈ kM̂
→ (positive, negative). Based on the mapping φ, one can compute the success
probability pM of an transaction from which Pr[E] is computed. More precisely,
for each ki ∈ kM̂ , φ(ki) =positive if and only if {di,1, . . . , di,vi} ⊆ k+

M̂
, where k+

M̂

defines set of documents such that d ∈ k+
M̂

if and only if φ(d) = 1 (here we abuse

the notation of φ defined over kM̂ and φ(d) = 1 means that d is a pre-image of
positive). The total number of k+

M̂
= m. Let n =v1 + · · · + vλ. Let pM̂ = m/n.

Given n, m and pM̂ , one compute Pr[E] = pm
M̂
(1− PM̂ )n−m.

We now view the look-up table generated by the auditor O as an imaginary
transaction generated by the target server S itself with some probability p (this
probability is defined as the trust value of on the server S). Let P be an (n +
1)th transaction. We now consider the probability that (n + 1)th transaction
is positive. That is, given Pr(E), we want to compute the maximum likelihood
distribution Pr(P = p|E).
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Notice that Pr(P = p ∧ E) = Pr(E) × Pr(P = p|E) and Pr(P = p ∧ E) =
p × pm(1 − p)n−m. Since Pr(E) is fixed, it follows that maxp Pr(P = p ∧ E) =
maxp Pr(P = p|E). One can verify that when p = m

n , Pr(P = p ∧ E) reaches
the maximum probability. We call p = m

n , the trust score of the target server S.
Clearly, our mechanism used to compute trust score p is optimal for the given
look-up table (an upper bound of trust values).

5 Conclusion

In this paper, a general trust mining method has been introduced and formalized
in the context of keyed MapReduce and then a novel method for trust comput-
ing has been proposed in the context of the maximum likelihood estimations
within the framework of the discrete Bayesian system. We have shown that our
computing of trust score is optimal for a given look-up table.
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